
Lie Algebras Checking on a Basis Supplement

In the course notes from Kailash C. Misra, Theorem 1.8 presents a method (without proof) for checking to see if
one has a Lie algebra by examining products of basis elements. In this note, we will give a slightly adjusted version of
that result with proof. First, we begin with a lemma about the Jacobi identity’s symmetry and an easy consequence.

Note: We will say “the Jacobi identity holds for a, b, c” if [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Lemma: (S3-Symmetry of the Jacobi Identity) Given [·, ·] : L×L → L is a bilinear and alternating multiplication
on a vector space L (over some field F) with a, b, c ∈ L, if the Jacobi identity holds for a, b, c, then it holds for all
permutations of a, b, c (i.e., it holds for a, b, c; a, c, b; b, a, c; b, c, a; c, a, b; and c, b, a).

Proof: Notice that the group of permutations on 3 characters, S3 = {(1), (12), (13), (23), (123), (132)}, is generated
by the transpositions (12) and (23): (1) = (12)2, (13) = (23)(12)(23), (123) = (12)(23), and (132) = (23)(12). Thus
if we show the Jacobi identity holds for a, b, c implies it holds for both b, a, c and a, c, b, then it must hold for all
other permutations as well.

Suppose it holds for a, b, c. Then, it holds for b, a, c since [b, [a, c]] + [a, [c, b]] + [c, [b, a]] = [b,−[c, a]] + [a,−[b, c]] +
[c,−[a, b]] = −[b, [c, a]]−[a, [b, c]]−[c, [a, b]] = −([a, [b, c]]+[b, [c, a]]+[c, [a, b]]) = 0 where we used skew-symmetry to flip
brackets around and linearity to pull out minus signs. Likewise, it holds for a, c, b since [a, [c, b]]+[c, [b, a]]+[b, [a, c]] =
[a,−[b, c]] + [c,−[a, b]] + [b,−[c, a]] = −[a, [b, c]]− [c, [a, b]]− [b, [c, a]] = −([a, [b, c]] + [b, [c, a]] + [c, [a, b]]) = 0 ■

Lemma: Given [·, ·] : L×L → L is a bilinear and alternating multiplication on a vector space L (over some field
F) with a, b ∈ L, then the Jacobi identity holds for a, a, b; a, b, a; and b, a, a.

Proof: We need only check that it holds for a, a, b (the others follow by S3-symmetry): [a, [a, b]]+[a, [b, a]]+[b, [a, a]] =
[a, [a, b]]+[a,−[a, b]]+[b, 0] = [a, [a, b]−[a, [a, b]]+0 = 0 where we used alternation to get [a, a] = 0 and skew symmetry
to get [b, a] = −[a, b] and then linearity to do the rest. ■

Now our result of interest:

Theorem: Let L be a vector space with ordered basis: x1, x2, . . . , xn and suppose [xi, xj ] is defined for all
1 ≤ i < j ≤ n. Moreover, this is extended assuming alternation (plus skew-symmetry) and linearly: [xi, xi] = 0 for

all i, [xj , xi] = −[xi, xj ] for i < j, and

 n∑
i=1

aixi,

n∑
j=1

bjxj

 =

n∑
i=1

n∑
j=1

aibj [xi, xj ] for all a1, . . . , an, b1, . . . , bn ∈ F.

Then, L is a Lie algebra if and only if the Jacobi identity holds for xi, xj , xk for all distinct ordered triples
1 ≤ i < j < k ≤ n.

Proof: If L is a Lie algebra, then the Jacobi identity always holds. Conversely, suppose it holds for all distinct
ordered triples. First, we will see that our bracket is alternating. Let a1, . . . , an ∈ F. n∑

i=1

aixi,

n∑
j=1

ajxj

 =
n∑

i=1

n∑
j=1

aiaj [xi, xj ] =
∑
i<j

aiaj [xi, xj ] +
∑
i=j

aiaj [xi, xj ] +
∑
i>j

aiaj [xi, xj ]

=
∑
i<j

aiaj [xi, xj ] +

n∑
i=1

(ai)
2[xi, xi] +

∑
i<j

ajai[xj , xi] =
∑
i<j

aiaj [xi, xj ] + 0 +
∑
i<j

aiaj(−[xi, xj ])

=
∑
i<j

aiaj [xi, xj ]−
∑
i<j

aiaj [xi, xj ] = 0.

Note: We split the double sum over i and j into cases: i < j, i = j, and i > j. Next, we substituted i = j in the
middle and interchanging labels i and j in the last sum. After that, we used [xi, xi] = 0 (alternation on our basis)
and [xj , xi] = −[xi, xj ] (skew-symmetry on our basis) to get that this is zero.

We now have a linear and alternating bracket and thus can apply our lemmas above. The second lemma tells us
that the Jacobi identity holds for all triples with at least one repeated vector. The first lemma (S3-symmetry) tells
us that the bracket holds not just for distinct ordered triples but for all distinct triples. Putting this together, we
now have that the Jacobi identity holds for all triples of basis vectors.

Our final step is to show it holds for all vectors in L. Let a1, . . . , an, b1, . . . , bn, c1, . . . , cn ∈ F.[
n∑

i=1

aixi,

[
n∑

j=1

bjxj ,
n∑

k=1

ckxk

]]
+

[
n∑

j=1

bjxj ,

[
n∑

k=1

ckxk,
n∑

i=1

aixi

]]
+

[
n∑

k=1

ckxk,

[
n∑

i=1

aixi,
n∑

j=1

bjxj

]]
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Pulling out sums (using linearity), we get:

=
n∑

i=1

n∑
j=1

n∑
k=1

aibjck[xi, [xj , xk]] +
n∑

j=1

n∑
k=1

n∑
i=1

bjckai[xj , [xk, xi]] +
n∑

k=1

n∑
i=1

n∑
j=1

ckaibj [xk, [xi, xj ]]

Since we are summing over all i, j, k in all three terms, we can just combine the sums:

=
n∑

i=1

n∑
j=1

n∑
k=1

aibjck([xi, [xj , xk]] + [xj , [xk, xi]] + [xk, [xi, xj ]]) =
n∑

i=1

n∑
j=1

n∑
k=1

aibjck(0) = 0

The penultimate equality follows since we have that the Jacobi identity holds for all triples of basis vectors. We
thus have that L is equipped with a bilinear, alternating bracket which satisfies the Jacobi identity (i.e., it is a Lie
algebra). ■

Example: (Cross product Lie algebra) R3 equipped with the cross product is a Lie algebra.

Notice that for v = (v1, v2, v3), w = (w1, w2, w3) ∈ R3 the cross product is defined by v × w =

∣∣∣∣∣∣
i j k
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
= (v2w3 − w2v3,−(v1w3 − w1v3), v1w2 − w1v2). Properties of the determinant guarantee that the cross product is
bilinear and alternating. We only need to check the Jacobi identity. By our above theorem it suffices to check on a
single triple: i, j,k:

i× (j× k) + j× (k× i) + k× (i× j) = i× i+ j× j+ k× k = 0+ 0+ 0 = 0

Example: (Very low dimensional Lie algebras) First, note that the only bilinear and alternating bracket on a zero

or one-dimensional vector space must be the zero bracket. Thus there is only one Lie algebra (up to isomorphism)
of dimension 1 (likewise dimension 0). If L is 2-dimensional, say with basis α = {x, y}, then if we let [x, y] = sx+ ty
for any s, t ∈ F, the above theorem tells us that L is a Lie algebra as long as we demand: [x, x] = [y, y] = 0,
[y, x] = −[x, y] = −sx− ty, and extend linearly. We don’t have to check the Jacobi identity here since there are no
distinct ordered triples of just two things!

Note: While all 0 and 1-dimensional Lie algebras are Abelian, 2-dimensional Lie algebras come in two flavors.
Either L is Abelian (i.e., [x, y] = 0x + 0y = 0 so all brackets are 0) or not. If not, sx + ty ̸= 0. Without loss
of generality, say s ̸= 0. We have that β = {w, z} where w = sx + ty and z = s−1y is still a basis (just check
independence). Note that [w, z] = [sx + ty, s−1y] = ss−1[x, y] + ts−1[y, y] = 1(sx + ty) + ts−10 = w. Thus every
non-Abelian 2-dimensional Lie algebra has a basis β = {w, z} such that [w, z] = w. This confirms that there are
exactly two isomorphism classes of 2-dimensional Lie algebras.

As soon as we go up to 3-dimensional Lie algebras, much more can happen. In fact, we see our first simple Lie
algebra (e.g., sl2(C))!
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