Homework #1

- #1 General Algebra Let \mathcal{A} be an algebra over a field \mathbb{F} (i.e. \mathcal{A} is a vector space over \mathbb{F} equipped with a bilinear multiplication). Denote the multiplication in \mathcal{A} by juxtaposition: $(a, b) \mapsto ab$. Suppose $a, b \in \mathcal{A}$. Define $L_a, R_a : \mathcal{A} \to \mathcal{A}$ by $L_a(b) = ab$ and $R_a(b) = ba$ (i.e. L_a is left multiplication by a and R_a is right multiplication by a).
 - (a) Show that L_a and R_a are linear operators (i.e. linear endomorphisms).
 - (b) Show that \mathcal{A} is an associative algebra if and only if $L_x \circ R_y = R_y \circ L_x$ for all $x, y \in \mathcal{A}$.
- #2 Identity Crisis Suppose that L is a Lie algebra (over some field \mathbb{F}). In addition, suppose that L is a unital algebra (i.e. there is some $\mathbb{1} \in L$ such that $[\mathbb{1}, x] = x = [x, \mathbb{1}]$ for all $x \in L$). Show that L Abelian (i.e. $[x, y] = \mathbf{0}$ for all $x, y \in L$). [*Hint:* Consider $[\mathbb{1}, [x, y]]$. Use the Jacobi identity.]
- #3 Linearly Independent Let L be a Lie algebra (over some field \mathbb{F}). Let $x, y \in L$ and suppose that $[x, y] \neq 0$. Show that $S = \{x, y\}$ is linearly independent. What does say about 1-dimensional Lie algebras?
- #4 Basis Problem Let L be a vector space (over some field \mathbb{F}) with basis $\beta = \{e, f, h\}$. Suppose that [e, f] = h, [h, e] = 2e, and [h, f] = -2f. In addition, suppose that the bracket is bilinear, alternating, and skew-symmetric (i.e. extend the definition of $[\cdot, \cdot]$ to $L \times L$ using bilinearity, alternation, and skew-symmetry).
 - (a) What is [e, e]? What is [f, h]?
 - (b) Show that this bracket makes L a Lie algebra.
 - [*Hint:* Use the modified Misra's Theorem 1.8 from our handout to minimize your work.]
 - (c) Let $E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $F = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and $H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Also, let $\alpha = \{E, F, H\}$. Prove that α is a basis for $\mathfrak{sl}_2(\mathbb{F}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{F} \text{ and } a + d = 0 \right\}$.
 - (d) Using the commutator bracket, show that [E, F] = H, [H, E] = 2E, and [H, F] = -2F.