Math 4010/5530

Homework #6

Let \mathfrak{g} be a Lie algebra over a field \mathbb{F} and let V be a \mathfrak{g} -module.

Also, let $\mathfrak{sl}_2(\mathbb{C}) = \operatorname{span}\{f, h, e\}$ where as usual: [h, f] = -2f, [h, e] = 2e, and [e, f] = h.

#1 Restriction Given a g-module V and a subalgebra \mathfrak{h} of \mathfrak{g} , we can think of V as a \mathfrak{h} -module by restricting \mathfrak{g} 's action to \mathfrak{h} : $h \cdot v$ where $h \in \mathfrak{h}$ and $v \in V$.

Notice that the matrices of the form $\begin{bmatrix} \star & \star & 0 \\ \star & \star & 0 \\ 0 & 0 & 0 \end{bmatrix}$ sitting inside $\mathfrak{sl}_3(\mathbb{C})$ give us an isomorphic copy of $\mathfrak{sl}_2(\mathbb{C})$

(similarly we can treat $\mathfrak{sl}_k(\mathbb{C})$ as a subalgebra of $\mathfrak{sl}_n(\mathbb{C})$ for any $k \leq n$). This allows us to treat $V = \mathfrak{sl}_3(\mathbb{C})$ as an $\mathfrak{sl}_2(\mathbb{C})$ -module with action: $\mathbf{x} \cdot \mathbf{y} = [\mathbf{x}, \mathbf{y}]$ (we are restricting \mathfrak{sl}_3 's adjoint action to this subalgebra isomorphic to $\mathfrak{sl}_2(\mathbb{C})$). By Weyl's theorem, we know that V is completely reducible.

Show that $V \cong V(2) \oplus V(1) \oplus V(1) \oplus V(0)$ by finding a basis of *h*-eigenvectors (h = diag(1, -1, 0)).

[*Note:* V(m) denotes the irreducible $\mathfrak{sl}_2(\mathbb{C})$ -module of highest weight m whose dimension is m + 1.]

#2 Eigen-Determinism Suppose that V is a finite dimensional $\mathfrak{sl}_2(\mathbb{C})$ -module. Using Weyl's theorem and the classification of irreducible $\mathfrak{sl}_2(\mathbb{C})$ -modules, show that V is the direct sum of k irreducible submodules where $k = \dim(V_0) + \dim(V_1)$ and $V_{\lambda} = \{\mathbf{v} \in V \mid h \bullet \mathbf{v} = \lambda \mathbf{v}\}.$

Explain why V is **not** determined by the set of h's eigenvalues alone. However, it is determined (up to module isomorphism) by h's eigenvalues *counting multiplicity*.

- #3 Not Quite Trivial We explore 1-dimensional representations.
 - (a) Suppose that $\varphi : \mathfrak{g} \to \mathfrak{gl}(1, \mathbb{F})$ is a 1-dimensional representation of \mathfrak{g} . Show that $\varphi(\mathfrak{g}') = \{\mathbf{0}\}$. [Recall that $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$.]
 - (b) (Grad Students) Show that any representation of $\mathfrak{g}/\mathfrak{g}'$ can be viewed as a representation of \mathfrak{g} on which \mathfrak{g}' acts trivially.
 - (c) (Grad Students) When $\mathbb{F} = \mathbb{C}$, show that if $\mathfrak{g}' \neq \mathfrak{g}$, then \mathfrak{g} has infinitely many non-isomorphic 1-dimensional modules, but if $\mathfrak{g}' = \mathfrak{g}$, then the only 1-dimensional representation of \mathfrak{g} is the trivial representation.

Note: For 3(a) it may be worth noting that we can identify $\mathfrak{gl}(1,\mathbb{F}) = \mathbb{F}$ (these are naturally isomorphic). Having done so, in part (a) we are showing that if φ is a 1-dimensional representation (so $\varphi \in \mathfrak{g}^*$ and it is a homomorphism), then $\varphi(\mathfrak{g}') = \mathbf{0}$. It might be helpful to note that the converse is also true: if φ is a dual vector vanishing on \mathfrak{g}' , then φ is a 1-dimensional representation (if we identify $\mathfrak{gl}(1,\mathbb{F})$ and \mathbb{F}).