
Math 4010-101 Homework #7 Due: Mon., Apr. 17th, 2023

Let g be a Lie algebra over a field F.

#1 Dualing Problem: Consider β = {(1, 1, 0), (2, 1, 0), (1,−1, 1)} (this is a basis for R3).

(a) Find the dual basis β∗. [Give formulas for each dual vector. For example: f(x, y, z) = 2x + 5y − z.
Unnecessary note: f is not one of the elements of β∗.]

(b) Explain why f(x, y, z) = x2 is not in (R3)∗.

(c) Explain why f(x, y, z) = x is in (R3)∗ and compute [f ]β∗ (this is f ’s β∗-coordinate vector).

(d) Find the change of basis matrices from std∗ = {i∗, j∗,k∗} (the standard dual basis) to β∗ (i.e. [I]β
∗

std∗).
Also, find the change of basis matrices from to β∗ to std∗ (i.e. [I]std

∗

β∗ ).

(e) What is the relationship between [I]β
∗

std∗ and [I]βstd?

Given two arbitrary bases α and γ for an arbitrary finite dimensional vector space (over some field F),

conjecture a relationship between [I]γα and [I]γ
∗

α∗ .

(f) [Grad Students] Prove your conjecture from part (e).

#2 Look at me, Mom. I’m a module too! Let V and W be g-modules.

(a) The space of linear maps from V to W can be turned into a g-module as follows:

Let T ∈ Hom(V,W ) = {S : V →W | S is linear} and g ∈ g. Then for all v ∈ V , define

(x •T )(v) = x •T (v)− T (x •v).

First, show x •T ∈ Hom(V,W ). Then show that this turns Hom(V,W ) into a g-module.

Note: I did some of this in a previous class. Prove the linear/bilinear bits. I will handle the Ja-
cobi/commutator (main) axiom for modules:

Suppose x, y ∈ g and T ∈ Hom(V,W ). We need to show that: x • (y •T ) − y • (x •T ) = [x, y] •T . This
calculation is unnecessarily opaque when done with module action notation, so we switch to representation
notation (I’ll use square brackets for plugging stuff into a map): Say ϕ(x)[v] = x •v (this is V ’s action) and
ψ(x)[w] = x •w (this is W ’s action). Then (x •T )[v] = x •T [v]− T [x •v] = (ψ(x) ◦ T )[v]− (T ◦ϕ(x))[v].
In other words, x •T = ψ(x) ◦ T − T ◦ ϕ(x).

x • (y •T )− y • (x •T ) = x • (ψ(y) ◦ T − T ◦ ϕ(y))− y • (ψ(x) ◦ T − T ◦ ϕ(x))

= x • (ψ(y) ◦ T )− x • (T ◦ ϕ(y))− y • (ψ(x) ◦ T ) + y • (T ◦ ϕ(x))

= ψ(x) ◦ (ψ(y) ◦ T )−(ψ(y) ◦ T ) ◦ ϕ(x)−ψ(x) ◦ (T ◦ ϕ(y)) + (T ◦ ϕ(y)) ◦ ϕ(x)

−ψ(y) ◦ (ψ(x) ◦ T ) + (ψ(x) ◦ T ) ◦ ϕ(y)+ψ(y) ◦ (T ◦ ϕ(x))− (T ◦ ϕ(x)) ◦ ϕ(y)

= (ψ(x) ◦ ψ(y)− ψ(y) ◦ ψ(x)) ◦ T − T ◦ (ϕ(x) ◦ ϕ(y)− ϕ(y) ◦ ϕ(x))

= [ψ(x), ψ(y)] ◦ T − T ◦ [ϕ(x), ϕ(y)] = ψ([x, y]) ◦ T − T ◦ ϕ([x, y]) = [x, y] •T

In the above calculation, recall that function composition is associative (so many parentheses could be
dropped). Also, note how the red terms (and then blue terms) cancel each other out. The first equality
in the last line follows from noting that the brackets in gl(V ) and gl(W ) (i.e., the codomains of ϕ and
ψ) are commutator brackets. Then the final two equalities follow from the fact that representations are
homomorphisms and from the definition of our action.

(b) We can turn F into a g-module via the trivial action: x • s = 0 for all s ∈ F. Explain how this then allows
us to define a dual module V ∗ for any g-module V [Hint: Use part (a).] What is the action of g on V ∗?



#3 Like Mt. Fuji Reflected in a Lake: Recall that V (m) is the sl2(C) module with highest weight m (where
m is a non-negative integer).

(a) Prove that V (1)∗ ∼= V (1).

(b) [Grad Students] Prove V (m)∗ ∼= V (m).

(c) [Everyone] Assuming the grad student problem (part (c)) and assuming the fact that as g-modules:(⊕̀
i=1

Wi

)∗
∼=
⊕̀
i=1

W ∗
i

for any finite dimensional g-modules Wi, prove that V ∗ ∼= V for any finite dimensional sl2(C)-module V .

Slogan: sl2-modules are self dual!

For Completeness, a sketchy proof of our direct sum fact (in an even more general context): Let W1, . . . ,W`

be g-modules for some Lie algebra g (over F). For each j = 1, . . . , `, let πj : ⊕iWi →Wj be the projection
onto the jth component. Thus if w = (w1, . . . , w`) ∈ ⊕iWi where wk ∈ Wk for all k = 1, . . . , `, then
πj(w) = wj . It is easy to show that πj is a g-module homomorphism.

Let (f1, . . . , f`) ∈ ⊕iW ∗
i where fk ∈ W ∗

k for all k = 1, . . . , `. Since compositions and sums of linear maps
are still linear, f = f1 ◦ π1 + · · · + f` ◦ π` is linear. Notice that f(w1, . . . , w`) = (f1 ◦ π1)(w1, . . . , w`) +
· · ·+ (f` ◦ π`)(w1, . . . , w`) = f1(w1) + · · ·+ f`(w`) so that f : (⊕iWi) → F (i.e., f ∈ (⊕iWi)

∗. Therefore,
ϕ(f1, . . . , f`) = f1 ◦ π1 + · · ·+ f` ◦ π` defines a map ϕ : ⊕iW ∗

i → (⊕iWi)
∗.

It is not hard to show that ϕ is itself a linear map: ϕ(f + g) = ϕ(f) + ϕ(g) and ϕ(cf) = cϕ(f).
Given x ∈ g, f ∈ ⊕iW ∗

i , and (w1, . . . , w`) ∈ ⊕iWi,
ϕ(x • f)[(w1, . . . , w`)] = ϕ(x • f1, . . . , x • fn)[(w1, . . . , w`)]

= ((x • f1) ◦ π1)[(w1, . . . , w`)] + · · ·+ ((x • f`) ◦ π`)[(w1, . . . , w`)]
= (x • f1)[w1] + · · ·+ (x • f`)[w`] = −f1(x •w1)− · · · − f`(x •w`)
= −(f1 ◦ π1)[(x •w1, . . . , x •w`)]− · · · − (f` ◦ π`)[(−x •w1, . . . ,−x •w`)]
= −ϕ(f)[x • (w1, . . . , w`)] = (x •ϕ(f))[(w1, . . . , w`)].

Therefore, ϕ(x • f) = x •ϕ(f) (i.e., ϕ is a module homomorphism).

Next, consider (the linear) maps ιj : Wj → ⊕iWi defined by ιj(w) = (0, . . . , 0, w, 0, . . . , 0) where the w is
in the jth slot. Notice that (πj ◦ιj)[w] = w. If we define ψ : (⊕iWi)

∗ → ⊕iW ∗
i by ψ(f) = (f ◦ι1, . . . , f ◦ι`),

then it is not hard to see that ψ is the inverse of ϕ. Thus ϕ is a module isomorphism.


