Due: Wed., Sept. 3rd, 2014

TOTAL ORDERS: A set T equipped with a relation "<" is totally ordered if "<" has the following properties:

Comparability For all $a, b \in T$, either a < b, b < a, or a = b.

Non-reflexive For all $a \in T$, $a \nleq a$.

Transitive For all $a, b, c \in T$, if a < b and b < c, then a < c.

Notes: A relation which satisfies the non-reflexive and transitive properties (but not necessarily comparability) is called a *strict partial order*. Next, b > a is the same as a < b. Also, $a \le b$ means either a < b or a = b. Likewise, a > b means either b < a or a = b.

MORE DEFINITIONS: Let T be a totally ordered set with order relation <. Let $A \subseteq T$.

Lower Bound $x \in T$ is a **lower bound** for A if $x \le a$ for all $a \in A$.

Upper Bound $x \in T$ is an **upper bound** for A if $x \ge a$ for all $a \in A$.

Infimum $x \in T$ is a **greatest lower bound** or **infimum** for A if $x \le a$ for all $a \in A$ (x is a lower bound) and for any other lower bound $y \in T$ we have $y \le x$ (x is the largest possible lower bound).

Supremum $x \in T$ is a **least upper bound** or **supremum** for A if $x \ge a$ for all $a \in A$ (x is an upper bound) and for any other upper bound $y \in T$ we have $y \ge x$ (x is the smallest possible lower bound).

Least Upper Bound Property An ordered set has the *least upper bound property* if every non-empty subset that is bounded above has a supremum.

Greatest Lowest Bound Property An ordered set has the *greatest lower bound property* if every non-empty subset that is bounded below has an infimum.

PROBLEMS – HEY, WE'VE ALL GOT 'EM: Let T be a totally ordered set with order relation <. Let $A \subseteq T$.

- 1. Suppose A has an infimum. Show that it's unique (so we can say the infimum and denote it $\inf(A)$).
- 2. Suppose A has a supremum. Show that it's unique (so we can say the supremum and denote it $\sup(A)$).
- 3. Give examples of sets with (a) both supremum and infimum, (b) no supremum or infimum, (c) a supremum but no infimum, and (d) an infimum but no supremum.
- 4. [Grad Problem] Show that the least upper bound property implies the greatest lower bound property. [The converse is true as well and has essentially the same proof with all of the <'s flipped to >'s.]