Due: Wed., Sept. 10th, 2014

CARDNALITY: If there is an injection from X into $\mathbb{N} = \mathbb{Z}_{\geq 0}$ (the natural numbers), we say that X is **countable**. If there is a bijection between X and \mathbb{N} , then X is countably *infinite* otherwise it is *finite*.

Munkres' §7 problem #5 (page 51). Determine which sets are countable. Justify your answers!

- (a) The set A of all functions $f: \{0,1\} \to \mathbb{Z}_{>0}$.
- (b) [Let n be some fixed positive integer.] The set B_n of all functions $f:\{1,\ldots,n\}\to\mathbb{Z}_{>0}$.
- (c) The set $C = \bigcup_{n \in \mathbb{Z}_{>0}} B_n$.
- (d) The set D of all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$.
- (e) The set E of all functions $f: \mathbb{Z}_{>0} \to \{0, 1\}$.
- (f) The set F of all functions $f: \mathbb{Z}_{>0} \to \{0,1\}$ that are **eventually zero**. This means that there is some N > 0 such that f(x) = 0 for all x > N.
- (g) The set G of all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ that are eventually 1.
- (h) The set H of all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ that are eventually constant.
- (i) The set I of all two-element subsets of $\mathbb{Z}_{>0}$.
- (j) The set J of all finite subsets of $\mathbb{Z}_{>0}$.

Grad students: Do all of these. Undergrads: You may skip 2 of your choice.