
Math 4710/5710-101 Separation Axioms Fall 2014

We now come to the seedy underbelly of topology. It is hard to believe in this day and age that there are those
who still practice radical segregation – even advocate for it! In the time of Felix Hausdorff (1868–1942) and Pavel
Urysohn (1898–1924) this was accepted culturally, but how such separation persists today is hard to understand.
You see, topologists love to separate. They have even convinced themselves that it’s a “regular” or “normal” thing.

Before we can begin to battle these prejudices, we must better understand them. Let’s explore this despicable list
of axioms in order that we may effect a change and move towards a world which isn’t T4 or T3. Maybe our children
can grow up not knowing the horrors of Hausdorff “spaces” and never having been inflicted with Urysohn’s innocent
sounding “lemma”. Stand up for what’s right! Be the change you believe in!

Let X be a topological space. We say two points (or more generally two sets) are topologically distinguishable
if there is an open set containing one but not the other.

Two sets are separated if each set is disjoint from the other set’s closure. So A,B ⊆ X are separated if
A∩B = ∅ and A∩B = ∅. [Note: This does not mean that their closures are disjoint!] Notice that separated objects
are topologically distinguishable (B is disjoint from X −B and X −B is an open set containing A).

Points (or more generally sets) are separated by open sets if the points (or sets) are contained in disjoint open
sets. That is, A,B ⊆ X are separated by open sets if there exists open sets U, V ⊆ X such that A ⊆ U , B ⊆ V ,
and U ∩ V = ∅. As before notice that “separated by open sets” implies plain old “separated”.

Sets are separated by continuous functions if there is a continuous function into the reals which takes on the
value of 0 at every point in the first set and 1 at every point in the second set. That is, A,B ⊆ X are separated by
a continuous function f : X → [0, 1] if f is continuous, f(a) = 0 for all a ∈ A, and f(b) = 1 for all b ∈ B. Again
notice that “separated by a continuous function” implies “separated by open sets” since A ⊆ U = f−1(−1/2, 1/2)
and B ⊆ V = f−1(1/2, 3/2) where U and V are open (since f is continuous) and disjoint (because (−1/2, 1/2) and
(1/2, 3/2) are disjoint).

Hausdorff A topological space is called Hausdorff if points can be separated by open sets. So for all x, y ∈ X such
that x 6= y, there exists open sets U, V ⊆ X such that x ∈ U , y ∈ V , and U ∩ V = ∅.

Regular A topological space is called regular if points and closed sets can be separated by open sets. Specifically,
for all x ∈ X and all closed sets A ⊆ X with x 6∈ A, there exists open sets U, V ⊆ X such that x ∈ U , A ⊆ V ,
and U ∩ V = ∅.

Completely Regular A topological space is called completely regular if points and closed sets can be separated
by continuous functions. Specifically, for all x ∈ X and all closed sets A ⊆ X with x 6∈ A there exists a
continuous function f : X → [0, 1] such that f(x) = 0 and f(a) = 1 for all a ∈ A.

Normal A topological space is called normal if closed sets can be separated by open sets. Specifically, for all closed
sets A,B ⊆ X with A ∩B = ∅, there exists open sets U, V ⊆ X such that A ⊆ U , B ⊆ V , and U ∩ V = ∅.

T0 A topological space is said to be T0 if all points are topologically distinguishable. This means that given x, y ∈ X
such that x 6= y there is an open set U ⊆ X such that either x ∈ U and y 6∈ U or x 6∈ U and y ∈ U .

T1 A topological space is said to be T1 if all points are separated. This means that there exists open sets U, V ⊆ X
such that x ∈ U but y 6∈ U and y ∈ V but x 6∈ V . This is equivalent to saying x 6∈ {y} and y 6∈ {x}. In other
words, being T1 is equivalent to {x} = {x} for all x ∈ X – that is – singletons are closed.

T2 A topological space is said to be T2 if it’s Hausdorff: T2 = Hausdorff.

T3 A topological space is said to be T3 if it’s regular and T0: T3 = regular + T0.

T31/2 A topological space is said to be T31/2 if it’s completely regular and T0: T31/2 = completely regular + T0.

T4 A topological space is said to be T4 if it’s normal and T1: T4 = normal + T1.

It can be shown that T4 ⇒ T31/2 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0. There are examples which show none of the
implications can be reversed. Also, please be careful. What Munkres calls normal, completely regular, and regular
are more acurately T4, T31/2, and T3.

Urysohn’s Lemma: In a normal space, disjoint closed sets can be separated by a continuous function. Specifically,
let X be normal and let A,B ⊆ X such that A and B are closed and A ∩ B = ∅. Then there exists a continuous
function f : X → [0, 1] such that f(A) = 0 and f(B) = 1.
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First Countable A topological space X is first countable if at each x ∈ X there is a countable neighborhood
basis. This means there is a countable collection B of neighborhoods of x such that for every neighborhood U
of x there exists some B ∈ B such that B ⊆ U . [Every metric space is first countable: Consider balls centered
at x ∈ X with radii 1/n for some n ∈ Z.]

Second Countable A topological space X is second countable if it has a countable basis. [Rn is second countable:
Consider balls of rational radii centered at points with rational coordinates.]

Separable We say D is dense in X if D = X. X is said to be separable if it contains a countable dense set. [For
example: Q = R so R is separable. More generally, any second countable space is separable.]

Lindelöf If every open cover has a finite subcover, our space is compact. If every countable open cover (an open
cover with only countably many elements) has a finite subcover, then our space is countably compact. If
every open cover has a countable subcover, our space is Lindelöf. [Obviously, Lindelöf + countably compact
= compact. Also, every second countable space is Lindelöf.]

Theorem: T3 + second countable ⇒ T4.

Theorem: metrizable ⇒ T4.

Theorem: compact + Hausdorff ⇒ T4.

Theorem: Well ordered sets with order topology are T4.

Urysohn’s Metrization Theorem: T3 + second countable ⇒ metrizable.

An Embedding Theorem: A space is T31/2 if and only if it is homeomorphic to a subspace of [0, 1]J for some J .

Locally Finite Let X be a topological space and A ⊆ P(X). We say that A is locally finite in X if for every
x ∈ X there exists some neightborhood U of x such that U is disjoint from all but finitely many elements of

A. B ⊆ P(X) is said to be countably locally finite (or σ-locally finite) in X if B =
∞⋃

n=1
Bn where each Bn

is locally finite in X. This means B is a countable union of locally finite sets.

Open Refinement Let A ⊆ P(X). We say that B is an refinement of A if for every A ∈ A there is an element
B ∈ B such that B ⊆ A. We say that B is an open refinement of A if B is a refinement of A and every
element of B is an open set.

Paracompact A topological space X is paracompact if every open cover of X has a locally finite open refinement
which covers X.

Locally Metrizable X is locally metrizable if every x ∈ X has a metrizable neighborhood.

Nagata-Smirnov Metrization Theorem: A space is metrizable if and only if it is T3 and has a countably locally
finite basis.

Theorem: Hausdorff + paracompact ⇒ T4.

Theorem: T3 + Lindelöf ⇒ paracompact.

Smirnov Metrization Theorem: metrizable ⇔ Hausdorff + paracompact + locally metrizable.

Baire Space X is a Baire space if given any countable collection A = {An | n = 1, 2, . . . } of closed sets of X such
that int(An) = ∅, we have int (

⋃∞
n=1An) = ∅. [Recall that int(A) is the interior of A. This is the union of

all open sets contained in A. So int(A) = ∅ if A contains no non-empty open sets.] In Baire’s terminology, a
set A is of first category if it is contained in the union of a countable collection of closed sets having empty
interiors. All other sets are of second category. So a Baire space is a space whose non-empty open sets are
all of the second category.

Baire Category Theorem: compact Hausdorff spaces are Baire space. Also, complete metric spaces are Baire
spaces.
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