Due: Wed., Mar. 5th, 2025

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

- #1 Getting Closure: Let A, B, and C_i (where $i \in I$) be subsets of a topological space X. Show...
 - (a) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (c) $\bigcup_{i \in I} \overline{C_i} \subseteq \overline{\bigcup_{i \in I} C_i}$
 - (d) Give an example of the containment in part (c) being proper (i.e., not equal).
- #2 Open to Inequality (Shame on you Hausdorff!): Let X be a Hausdorff (i.e., T_2) space. Show the diagonal $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$ (with the product topology).
- #3 Weird Closure: [Grad.] Recall \mathbb{R}_{ℓ} is the real numbers equipped with the lower limit topology. Let $\mathbb{R}_{\text{rat.}-\ell}$ be the real numbers equipped with the topology generated by the basis $\mathcal{C} = \{[a,b) \mid a,b \in \mathbb{Q}\}$. We could call this the rational lower limit topology. *Note:* We previously showed that the topology on \mathbb{R}_{ℓ} is strictly finer than that of $\mathbb{R}_{\text{rat.}-\ell}$.

Determine the closures of $A = (0, \sqrt{2})$ and $B = (\sqrt{2}, 4)$ in the (a) standard topology, (b) lower limit topology, and (c) rational lower limit topology.

#4 Continuous Products: Let $f: A \to B$ and $g: C \to D$ be continuous functions between topological spaces. Consider $f \times g: A \times C \to B \times D$ defined by $(f \times g)(a,c) = (f(a),g(c))$. Prove $f \times g$ is continuous.