Math 4720 & 5210 Irreducible Polynomials Abstract Algebra

‘ Notation: In this handout, unless otherwise specified, R denotes an integral domain. ‘

Let f(z) = ap + a1x + azz® + - -+ € R[[z]] be a non-zero (formal) power series with coefficients in

R. Suppose that ap # 0 but a; = 0 for ¢ < k. Then we define ldeg(f(x)) = k (i.e., the low degree of f(z) is k).
Equivalently, ldeg(f(z)) = k if and only if f(z) is divisible (in R[[z]]) by =* but not z**!.

Let g(z), h(z) € R[[z]] and suppose both are non-zero. Then ldeg(g(z)h(z)) = ldeg(g(x)) + ldeg(h(z)).

Proof: Let ldeg(g(z)) = k and ldeg(h(z)) = ¢. In particular, say g(z) = bpa® + bry12¥+t! + -+ - where by # 0 and
h(z) = coz® + cpp1z* + -+ where ¢y # 0.

Notice that g(x)h(z) = (bpa® +bpr12® 1+ (cox® +eppra™ L+ ) = brepr T + (bpyrco+brcoy 1 ) F T 4
Also, note that since by # 0, ¢y # 0, and R is an integral domain (it has no zero divisors), we have bgc, # 0. Therefore,
ldeg(g(z)h(z)) = ldeg(g(x)) + ldeg(h(z)). B

If g(z),h(x) € R[z] are non-zero polynomials, then deg(g(z)h(z)) = deg(g(z)) + deg(h(x)) since
g(x) = bypa™ + - - - + by with by, # 0 and h(x) = cex’ + - - - + ¢y with ¢ # 0 implies g(2)h(x) = bypcgr™ + -+ boco
where b,,cy # 0 since R has no zero divisors.

Consequently, notice if f(x) € (R[z])* then there is some g(z) € (R[z])* such that f(z)g(x) = 1 so that
deg(f(x)) + deg(g(x)) = deg(f(x)g(x)) = deg(1) = 0 so that deg(f(z)) = deg(g(x)) = 0 and thus f(z) = ao,
g(z) = by, and 1 = f(x)g(z) = agbg. Thus f(x) = ap € R*. Conversely, f(z) = a € R* implies (f(z))™! =a~!
exists in R. Therefore, (R[z])* = R*. Similarly, we have the following:

Corollary: | (R[[z]))* = {ao + a17 + azx® + -+ | a; € R for all i and ag € R*}

(i.e., the units are the power series whose constant term is a unit).
Proof: Let f(z) € (R[[z]])*. Then there exists some g(z) € (R[[z]])* such that f(z)g(x) = 1, so ldeg(f(x)) +
ldeg(g(z)) = 1deg(f(x)g(z)) = ldeg(1) = 0. Therefore, f(z) = ag+arx+--- and g(x) = by + b1z + - - - where ag and

by are non-zero. We have (ag + a1z + -+ )(bg + biz + - -+ ) = agbo + (agb1 + a1bg)x + - - - = 1. Therefore, agby = 1 so
that ag,bg € R*.

Conversely, suppose f(x) = ag+ a1z +--- where ag € R*. Define by = agl, b = —agl(albo), by = —agl(albl +
asbp), and in general b, = —agl(cubm_l + -4 amby) (we define b, recursively in terms of bg,...,by,—1). This
implies aobo = 1, aobo + a1b0 = O7 aobg + a1b1 + a2b0 = 0, and in g‘eneral aobm + albm_l + -+ ambo = 0. Thus if
we let g(x) = bg + byx + - -+, then f(z)g(z) =1+ 0x+--- =150 (f(z))~! = g(z) exists (i.e., f(x) € (R[[z]])*). A

Let I be a non-zero ideal of a PID R. Then every element in R/I is a unit, zero divisor, or zero.

Proof: Everything is zero in R/I if R = I. Let’s assume I is a non-zero, proper ideal. Since R is a PID, we have
I = (r) for some non-zero, non-unit € R. Consider a non-zero element z + I € R/I. Let (d) = (x,r) = (z) + I
(i.e., d is a greatest common divisor of x and r). Thus d = ax + br for some a,b € R. Also, x € (z) C (d) so there
exists y € R such that x = dy and likewise r = dz for some z € R.

If d is a unit in R, we have (d~ta+ 1) (x +I) = 1+ I since d"taz + (d='b)r = 1. Thus x + [ is a unit in
R/I. Now suppose d is not a unit in R. In this (final) case, we will have that x + I is a zero divisor. First, suppose
z4+1=0+1. Then z € I = (r) so there is some w € R such that z = rw. This means that r = zd = rwd implies
wd = 1 (because R is an integral domain and r # 0). Thus d is a unit contrary to our assumption. Therefore,
z4+ 1 #0411 (also  + I # 0+ I by assumption). However, (x + I)(z+ ) =az+ I =ydz+ I =yr+1=0+1.
Therefore, x + I is a zero divisor. B

Corollary: | In a PID, non-zero prime ideals are maximal. Consequently, irreducibles generate maximal ideals.

Proof: Let {0} # I be a prime ideal of a PID R. Then R/I is an integral domain and hence has no zero divisors.
Therefore, by our theorem above, every non-zero element is a unit. Thus R/I is a field and so I is maximal. Finally,
prime elements generate prime ideals. Thus irreducible (= prime) elements generate maximal ideals. Hl

Corollary: | Let f(x) € F[z] where F is a field. Then f(z) is irreducible if and only if F[z]/(f(z)) is a field.

‘Proposition: (Eisenstein’s Criterion) Let f(z) = a,2™ + --- + a1z + a9 € R[z] (n > 1) and let P be a prime
ideal such that ag,...,an—1 € P but a,, € P and ag & P> = {3, a;b; | a;,b; € P}. Then f(x) is irreducible in R[z].
Proof: Since ag € P and P # R, f(x) is not a unit in R[z]. Now suppose f(x) properly factors, say f(x) = g(x)h(x)
where g(z) = bz™ + -+ 4 by and h(z) = cpz’ + -+ + ¢o where b, # 0, co # 0, and m, £ > 0. Now reduce the

coefficients of x appearing in f(x), g(z), and h(z) mod P. Call the resulting polynomials f(z), g(x), and h(x). We
have f(z) = g(z)h(z) in (R/P)[z].




Since P is a prime ideal, R/P is an integral domain. Therefore, ldeg(f(z)) = ldeg(g(x)) + ldeg(h(z)). But
f(z) = @,z since ag,...,a,_1 € P and @, # 0 (in R/P) since a, ¢ P. Therefore, ldeg(f(z)) = n. Now since
g(z)h(z) = f(z) # 0 and g( )’s hence g(z)’s non-zero coefficients have indices between 0 and m, we must have that
ldeg(g(z)) < m. Likewise, ldeg(h(x)) < £. Therefore, since ldeg(g(z)) + ldeg(h(z)) = ldeg(f(z)) = n = m + {, we
conclude ldeg(g(x)) = m and ldeg(h(z)) = £. Thus deg(g(z)) = ldeg(g(z)) = m and deg(h(z)) = ldeg(h(z)) = .
Therefore, g(z) = Bz™ and h(x) = Cx* for some B,C € R/P.

But this implies that both g(z)’s and h(z)’s constant terms are 0. Therefore, both by and ¢y belong to P. But
this implies that ag = bpcy € P? (contradiction). No such proper factorization can exist, so f(z) is irreducible. Bl

Corollary: | (Eisenstein’s Criterion for Z[z]) Let f(x) = a,a™ + -+ + a12 + ap € Z[x] and suppose there is some

prime (integer) p such that p divides ag, a1, ..., a,_1 but p does not divide a,, and p? does not divide ag. Then f(z)
is irreducible in Z[z] and hence irreducible in Q[z].

Note that proof of the final statement (irreducibility in Q[z]) requires Gauss’ Lemma. We will pass on this (for now).

Consider f(z) = 10z° + 72* — 1422 + 49z + 21 € Z[x]. Notice that p = 7 divides all but the leading

coefficient and p? = 49 does not divide the constant term. Thus by Eisenstein’s criterion, f(z) is irreducible in Q[z].

For low degree polynomials, knowing whether they have a root or not, can determine irreducibility. First, we will
recall some basic results and then we return to irreducibility.

(Division Algorithm) Let f(x),g(z) € R[z] (where R is an integral domain) where the leading co-

efficient of g(z) is a unit (in particular, g(x) is not zero so it has a leading coefficient). Then there exists unique
q(z),r(x) € R[z] such that f(x) = g(z) - ¢(x) + r(z) where either r(z) = 0 or deg(r(x)) < deg(g(z)).

We note that the division algorithm holds more generally than just over integral domains. However, if R is not
an integral domain, we can lose uniqueness of quotient and remainders. Also, when R is a field, demanding that
the leading coefficient is a unit is merely demanding that we divide by a non-zero polynomial (since all non-zero
coefficients are units). As a consequence, when F is a field, F[z] is a Euclidean domain (with degree function 6 = deg).

‘ Proposition: ‘ Let f(x) € R[z] (where R is an integral domain). Then a € R is a root of f(z) if and only if there

exists some g(z) € R[z] such that f(z) = (z — a)g(z).

Proof: Obviously if f(z) = (z — a)g(x) then evaluating at = a yields f(a) = (a — a)g(a) = 0. Now suppose a € R
e

is a root of f(x). Since the leading coefficient of x — a is 1 (i.e., a unit), we can divide f(x) by 2 — a. Thus there
exists q(z),r(x) € R such that f(z) = (x — a)g(x) + r(z) where either r(x) = 0 or deg(r(z)) < deg(z —a) =1 (i.e.,
(z) +
T —

deg(r(z)) = 0). Either way, r(z) = c is a constant polynomial. Thus f(z) = (x — a)q c. Evaluating at x = a

x
yields, 0 = f(a) = (a — a)q(a) + ¢ (since a is a root of f(x)). Thus ¢ =0 and so f(z) = (x — a)q(z) as desired. W

Let F be a field. Notice that constant polynomials are either zero or units (so not irreducible). Suppose f(z) € F[z]
is reducible and deg(f(z)) > 0. Then since f(z) is non-constant, it must fail to be irreducible by factoring into a
product of some non-constant polynomials of lower degree. Keeping in mind that deg(g(z)h(z)) = deg(g(x)) +
deg(h(x)) for any polynomials g(x) and h(z) with coefficients in an integral domain, we get that linear polynomials
in F[z] must be irreducible (we can’t factor into non-constant polynomials of lower degree).

Next, suppose f(z) € F[z] where deg(f(z)) = 2 or 3. Then any factorization into polynomials of smaller degree
would have to involve at least one factor of degree 1. Therefore, having a factorization is the same as having a root.
We get the following:

‘Proposition: ‘ Let F be a field and f(x) € Flx]. If deg(f(x)) =1 (i.e., f(z) is linear), then f(z) is irreducible. If
deg(f(z)) =2 or 3 (i.e., f(x) is quadratic or cubic), then f(x) is irreducible if and only if f(z) has no roots in F.

While any polynomial of degree 4 or more with a root must be reducible (since roots yield linear factors), failing
to have roots doesn’t imply irreducibility anymore. As a simple example, 2* + 222 + 1 = (2% + 1)? is reducible in
Q[z] but it has no roots in Q (since +i ¢ Q).

We say that a root * = a of f(x) has multiplicity k if there exists some g(z) € R[z] such that

f(z) = (r —a)"g(x) but g(a) # 0 (i.e., g(x) does not contain a x — a factor). Next, let f(z) = apx™+---+ap. Then
we define f/(r) = na,z" 1+ -+ 2a2x + a1 (i.e., the formal derivative of f(z)).

It turns out that the formal derivative of polynomials in R[z] obeys the same linearity and product rules that our
usual derivative does. In particular, we have that if f(x) = (z—a)*g(x) , then f'(z) = k(z—a)*1g(x)+(z—a)*¢'(z) =
(r —a)*~Y(kg(x) + (x — a)g’(z)). In particular, if 2 = a is a root of f(x) of multiplicity k, then assuming k # 0 in
R, z = ais a root of f'(x) of multiplicity k& — 1.



‘Propositionz ‘ Let 0 # f(x) € R[z] (where R is an integral domain). Then f(z) has at most deg(f(x)) roots in
R (counting multiplicity).

Proof: Suppose f(x) has roots ri,...,7, with multiplicities ki,...,k;. Then f(z) = (z — r1)Fg(z) for some
polynomial g(x) where deg(g(z)) = deg(f(z)) — k1. Notice that if b is any other root (# r1), we have 0 = f(b) =
(b —r1)¥1g(b) where (b — ;)% # 0. Thus g(b) = 0 and so r9,...,7, are roots of g(x). Ultimately, we get that
fx) = (x —r)* - (x — rp)*h(z) for some h(x) € R[z] where deg(h(x)) = deg(f(x)) — ky — ko — --- — ky. Since
deg(h(z)) > 0, we have k1 + -+ + k¢ < deg(f(z)). B

Let’s see how to detect roots in certain circumstances.

(Rational Root Theorem) Let f(z) = ana™ + -+ + a1z + ag € R[z] where R is an integral domain

with field of fractions F. Suppose p/q € F for some p,q € R, g # 0, and ged(p,q) =1 (i.e., p/q is a reduced fraction).
Then p/q is a root of f(x) implies p divides ag and ¢ divides a,.

Proof: Suppose p/q is a reduced fraction and f(p/q) = 0. Then a, (Z) 4+t ay Z) + ag = 0. Multiplying

this equation by ¢™ to clear denominators, we get a™p” + 1" 'q+ - - + aop?q" 2 + a1pg” ' + apg™ = 0. Notice
that p(anpn—l + an_lpn—2q+ et a2pqn—2 + alqn—l) — anpn + an_lpn—1q+ cee a2p2qn—2 + alpqn—l — —G,an, so
p divides —apq™. But p and ¢ are relatively prime, so p must divide ag. Likewise, ¢ must divide a,,. B

Consider f(z) = 27246 € Z[z]. If r = p/q is a rational root (written as a reduced fraction) of f(x),
then p must divide ag = 6 (i.e., p = +1,+2,4+3, or +6 and ¢ must divide a,, = 1 (so ¢ = £1). Thus the only possible
(rational) roots of f(z) are £1,£2,43, and £6. A (tedious) blind check shows that f(1) = f(2) = f(—3) = 0.
Therefore, f(x) = (z — 1)(z — 2)(z + 3). Notice that any rational root of a monic polynomial is in fact an integral
root!

Consider f(z) = 22® +5 € Z[x]. Then p/q is a root of f(x) € Q implies p divides 5 and ¢ divides 2.
Thus the only possible rational roots are 1, +5, +£1/2, and £5/2. Since (after a tedious check) we find that none of

these are roots of f(z), we must conclude f(z) has no roots in Q. Since f(z) is a cubic, we have that f(z) = 223 +5
is irreducible in Q[z].

Corollary: | Let p be a prime. Then /P and {/p are irrational.

Proof: If | /p was rational, we would have a rational root of 2% — p. But the rational root theorem says that the only
possible rational roots of 2 — p are 1 and £p. Notice that (£1)2 —p=1—p # 0 and (&p)? —p = p*> —p # 0. Thus
22 — p has no rational roots (it’s irreducible in Q[z]). In particular, its root z = /P cannot be rational. Likewise,

for &p consider the polynomial 22 —p. A

Corollary: | Even better — Let p be a prime. Then /p for any n > 1 is irrational.

Proof: Apply Eisenstein’s criterion to ™ — p (using your prime p) and get that z™ — p is irreducible in Q[z].
Therefore, it has no rational roots. Thus its root x = {/p cannot be rational. B

Sometimes reducing mod some ideal will turn an infinite problem into a finite tractable one. First, let R be a
commutative ring with 1 and I an ideal of R. Notice that we have a homomorphism from R[z| to (R/I)[z] where
anx™ + -+ + ag maps to (a, + Iz + -+ (ag + I) (i.e., reduce coefficients mod I). Let f(z) denote the image of
f(z) under this homomorphism.

‘ Proposition: ‘ Let I be an ideal of a UFD R. Suppose that f(z) = ana™ + -+ 4+ ag € R[z] where n >0, a,, € I,

and ged(ag, . . .,a,) = 1 (this last condition means f(z) is primitive). If f(z) is irreducible in (R/I)[z], then f(x) is
irreducible in R[z] (and thus in F[z] where F is the field of fractions of R).

Proof: First, we note (without proof) that for primitive polynomials, irreducibility in R[x] and irreducibility in F[z]
are equivalent. Also, a nonconstant primitive polynomial is reducible in R[z] if and only if it factors as a product of
nonconstant polynomials of lower degree. Now we are ready to proceed.

Suppose f(z) = g(x)h(x) where g(z) and h(x) are nonconstant polynomials in R[z]. Then f(z) = g(z)h(z) in

(R/I)[x]. Now since a,, & I, we have a,+1 # 0+ and so deg(f(x)) = deg(f(z)). Next, deg(f(z)) = deg(g(z)h(x)) =
deg(g(z)) + deg(h(z)) (since R is an integral domain we have that the degree of the product is the sum of degrees).

But deg(g(z)) < deg(g(x)) and deg(h(z)) < deg(h(x)) since reducing coefficients mod I can possibly lower degrees.

Thus deg(f(x)) = deg(g(z)) + deg(h(x)) > deg(g(x)) + deg(h(z)) > deg(g(x)h(x)) = deg(f(z)) (since in general the
degree of the product is only bounded by the sum of degrees — a lack of zero divisors is needed to guarantee equality).
If follows that deg(g(x)) = deg(g(x)) and deg(h(z)) = deg(h(x)). Thus f(z) properly factors in (R/I)[z]. B


https://www.wolframalpha.com/input/?i=2x%5E3%2B5+at+x%3D%5B-1%2C1%2C-5%2C5%2C-1%2F2%2C1%2F2%2C-5%2F2%2C5%2F2%5D

Let’s show that f(z) = 22 + 62% — 15z + 3 is irreducible in Q[z] using three techniques.

e Suppose p/q is a rational root (as a reduced fraction). Then, by the Rational Root Theorem, p divides 3 and
q divides 2. Thus p/q is £1,43,+£1/2, or £3/2. A very tedious calculation shows that none of these are roots.
Since our cubic polynomial has no roots in Q, it is irreducible in Q[z].

e Notice that p = 3 divides all but the leading coefficient of f(z) and p? = 9 does not divide the constant term
3. Thus by Eisenstein’s criterion, f(z) is irreducible in Z[x] (and thus also Q[z]).

e If we reduce f(x) modulo 5, we get f(z) = 22° + 2%+ 3. Plugging in z = 0,1,2, 3, and 4 yields f(z) = 3,1,3,1,
and 2. Since (this cubic polynomial) f(x) has no roots in Zs, it is irreducible in Zs[z]. Applying our above
proposition (R =7 and I = (5)), we conclude that f(z) is irreducible in Z[z] (and thus in Qx]).

Testing irreducibility of integral polynomials mod primes is often quite helpful. In fact, the factorization algo-

rithms of our computer algebra systems are built on this kind of thing. However, irreducibilty mod primes is not a
cure all. Dummit and Foote give the example: 2* — 72z +4. This polynomial is irreducible in Z[z] but it is reducible

in Z,[x] for every prime p.

Of course, there are many other ways to check for irreducibility. One more simple trick is to shift the indeterminate.
Notice that f(z) = g(z)h(z) if and only if f(x + a) = g(x 4+ a)h(x + a). From this we immediately get:

‘ Proposition: ‘ Suppose a € R and f(z) € R[z]. Then f(x + a) is irreducible if and only if f(x) is irreducible.

p_1
Corollary: | For any prime integer p, the cyclotomic polynomial ®,(z) = v T = 2Pl 4P 2 4441 s
o

irreducible in Q[z]. .
-1 1 1
Proof: ®,(x+1)= ((xx—:—l))—l =—((z+1)P-1)= . (xp—l—pxp_l—i— (p)xp_2+-~- (g) 2+pa:+1—1>

!
Therefore, ®,(z+1) = 2P~ +pa? >+ g) e (‘Z) x+p. Notice that the binomial coefficient (i) = Wy — ) L Bl
(p—Fk)!

when 1 < k < p—1 must be divisible by p (since k < p and p— k < p implies k! and (p — k)! are products of integers
less than p). Thus we can apply Eisenstein’s criterion to ®,(x + 1) noting that all but the leading coeflicient are
divisible by p and the constant term is not divisible by p?. Finally, since ®,(z + 1) is irreducible, we also have that
®,(x) is irreducible. B

There are also cyclotomic polynomials defined for non-prime indices. The general definition is that ®,,(z) is the
product of & — ¢ as ¢ ranges over all primitive n'P-roots of unity. Note: ¢ is an n*P-root of unity if ¢ = 1. The
n*-roots of unity form a cyclic subgroup of order n of C* (under multiplication). An n* -root is primitive if it
generates this subgroup. For example, the 4*'-roots of unity are {#1,44}. This group is generated by 4 (so these
are the primitive 4'"-roots of unity). Therefore, ®4(z) = (v —i)(z + i) = 2% + 1. When n is prime, all the n*®-roots
of unity are primitive except for x = 1. This leads to our formula defined above. It turns out that all cyclotomic
polynomials are irreducible over Q[z]. These polynomials play an important role in Galois theory and number theory.

‘ Addendum: ‘ One should distinguish between polynomials and polynomial functions. We say that a function f
from a ring to a ring is a polynomial function if there are ag, ..., a, € R such that the formula f(z) = a,z™+---+ag
defines our function f : R — R. This might seem just like the definition of the polynomial g(x) = a,z™ +--- 4+ ag €
RJx], but there is a subtle difference. Both f(x) and g(x) are determined by their coefficients. However, while distinct
lists of coefficients yield distinct polynomials in R[z]. It is possible to have two distinct polynomial formulas for the
same polynomial function f!

Consider the following function f : Zy — Zs defined by f(z) = 2> + x + 1. Then f(0) = 0>+ 0+1 =1 and
f(1)=12+1+1=1. Thus f(z) = 1 for all z € Z3. So even though 2%+ x + 1 # 1 as polynomials in Zs[z], we have
22 + 2+ 1 =1 as polynomial functions.

But our intuition that we should be able to use polynomials formally and as functions interchangably is not that
far off. Consider the following:

Let R be an infinite integral domain. Let f(z) = ana™ + -+ + ap and g(z) = bypx™ + -+ + by be

polynomials in R[z]. Then f(r) = g(r) for all » € R (i.e., f and g are equal as polynomial functions) if and only if
f(z) = g(x) as polynomials in R[z].

Proof: Obviously, if f(x) = g(z) in R[x], then they both define the same function. Suppose f(r) = g(r) for all
r € R. Notice that if h(x) = f(x) — g(x) is non-zero, it can have at most deg(h(z)) roots (counting multiplicity).
But h(r) = f(r) — g(r) =0 for all » € R and R is infinite, so h(x) must be zero. Thus f(z) = g(z). R

On the other hand, if R is finite, say |R| = IV, then there can be at most NV functions from R to R. Thus while
there are infinitely many elements in R[x] (as long as R # {0}), we can have no more than N polynomial functions!




