
Math 4720 & 5210 Irreducible Polynomials Abstract Algebra

Notation: In this handout, unless otherwise specified, R denotes an integral domain.

Definition: Let f(x) = a0 + a1x + a2x
2 + · · · ∈ R[[x]] be a non-zero (formal) power series with coefficients in

R. Suppose that ak 6= 0 but ai = 0 for i < k. Then we define ldeg(f(x)) = k (i.e., the low degree of f(x) is k).
Equivalently, ldeg(f(x)) = k if and only if f(x) is divisible (in R[[x]]) by xk but not xk+1.

Lemma: Let g(x), h(x) ∈ R[[x]] and suppose both are non-zero. Then ldeg(g(x)h(x)) = ldeg(g(x)) + ldeg(h(x)).

Proof: Let ldeg(g(x)) = k and ldeg(h(x)) = `. In particular, say g(x) = bkx
k + bk+1x

k+1 + · · · where bk 6= 0 and
h(x) = c`x

` + c`+1x
`+1 + · · · where c` 6= 0.

Notice that g(x)h(x) = (bkx
k +bk+1x

k+1 + · · · )(c`x` +c`+1x
`+1 + · · · ) = bkc`x

k+` +(bk+1c` +bkc`+1)xk+`+1 + · · · .
Also, note that since bk 6= 0, c` 6= 0, and R is an integral domain (it has no zero divisors), we have bkc` 6= 0. Therefore,
ldeg(g(x)h(x)) = ldeg(g(x)) + ldeg(h(x)). �

Remark: If g(x), h(x) ∈ R[x] are non-zero polynomials, then deg(g(x)h(x)) = deg(g(x)) + deg(h(x)) since
g(x) = bmx

m + · · ·+ b0 with bm 6= 0 and h(x) = c`x
` + · · ·+ c0 with c` 6= 0 implies g(x)h(x) = bmc`x

m+` + · · ·+ b0c0
where bmc` 6= 0 since R has no zero divisors.

Consequently, notice if f(x) ∈ (R[x])× then there is some g(x) ∈ (R[x])× such that f(x)g(x) = 1 so that
deg(f(x)) + deg(g(x)) = deg(f(x)g(x)) = deg(1) = 0 so that deg(f(x)) = deg(g(x)) = 0 and thus f(x) = a0,
g(x) = b0, and 1 = f(x)g(x) = a0b0. Thus f(x) = a0 ∈ R×. Conversely, f(x) = a ∈ R× implies (f(x))−1 = a−1

exists in R. Therefore, (R[x])× = R×. Similarly, we have the following:

Corollary: (R[[x]])× = {a0 + a1x+ a2x
2 + · · · | ai ∈ R for all i and a0 ∈ R×}

(i.e., the units are the power series whose constant term is a unit).
Proof: Let f(x) ∈ (R[[x]])×. Then there exists some g(x) ∈ (R[[x]])× such that f(x)g(x) = 1, so ldeg(f(x)) +
ldeg(g(x)) = ldeg(f(x)g(x)) = ldeg(1) = 0. Therefore, f(x) = a0 + a1x+ · · · and g(x) = b0 + b1x+ · · · where a0 and
b0 are non-zero. We have (a0 + a1x+ · · · )(b0 + b1x+ · · · ) = a0b0 + (a0b1 + a1b0)x+ · · · = 1. Therefore, a0b0 = 1 so
that a0, b0 ∈ R×.

Conversely, suppose f(x) = a0 + a1x+ · · · where a0 ∈ R×. Define b0 = a−10 , b1 = −a−10 (a1b0), b2 = −a−10 (a1b1 +
a2b0), and in general bm = −a−10 (a1bm−1 + · · · + amb0) (we define bm recursively in terms of b0, . . . , bm−1). This
implies a0b0 = 1, a0b0 + a1b0 = 0, a0b2 + a1b1 + a2b0 = 0, and in general a0bm + a1bm−1 + · · ·+ amb0 = 0. Thus if
we let g(x) = b0 + b1x+ · · · , then f(x)g(x) = 1 + 0x+ · · · = 1 so (f(x))−1 = g(x) exists (i.e., f(x) ∈ (R[[x]])×). �

Theorem: Let I be a non-zero ideal of a PID R. Then every element in R/I is a unit, zero divisor, or zero.

Proof: Everything is zero in R/I if R = I. Let’s assume I is a non-zero, proper ideal. Since R is a PID, we have
I = (r) for some non-zero, non-unit r ∈ R. Consider a non-zero element x + I ∈ R/I. Let (d) = (x, r) = (x) + I
(i.e., d is a greatest common divisor of x and r). Thus d = ax + br for some a, b ∈ R. Also, x ∈ (x) ⊆ (d) so there
exists y ∈ R such that x = dy and likewise r = dz for some z ∈ R.

If d is a unit in R, we have (d−1a + I) · (x + I) = 1 + I since d−1ax + (d−1b)r = 1. Thus x + I is a unit in
R/I. Now suppose d is not a unit in R. In this (final) case, we will have that x+ I is a zero divisor. First, suppose
z + I = 0 + I. Then z ∈ I = (r) so there is some w ∈ R such that z = rw. This means that r = zd = rwd implies
wd = 1 (because R is an integral domain and r 6= 0). Thus d is a unit contrary to our assumption. Therefore,
z + I 6= 0 + I (also x + I 6= 0 + I by assumption). However, (x + I)(z + I) = xz + I = ydz + I = yr + I = 0 + I.
Therefore, x+ I is a zero divisor. �

Corollary: In a PID, non-zero prime ideals are maximal. Consequently, irreducibles generate maximal ideals.

Proof: Let {0} 6= I be a prime ideal of a PID R. Then R/I is an integral domain and hence has no zero divisors.
Therefore, by our theorem above, every non-zero element is a unit. Thus R/I is a field and so I is maximal. Finally,
prime elements generate prime ideals. Thus irreducible (= prime) elements generate maximal ideals. �

Corollary: Let f(x) ∈ F[x] where F is a field. Then f(x) is irreducible if and only if F[x]/(f(x)) is a field.

Proposition: (Eisenstein’s Criterion) Let f(x) = anx
n + · · · + a1x + a0 ∈ R[x] (n ≥ 1) and let P be a prime

ideal such that a0, . . . , an−1 ∈ P but an 6∈ P and a0 6∈ P 2 = {
∑

i aibi | ai, bi ∈ P}. Then f(x) is irreducible in R[x].

Proof: Since a0 ∈ P and P 6= R, f(x) is not a unit in R[x]. Now suppose f(x) properly factors, say f(x) = g(x)h(x)
where g(x) = bmx

m + · · · + b0 and h(x) = c`x
` + · · · + c0 where bm 6= 0, c` 6= 0, and m, ` > 0. Now reduce the

coefficients of x appearing in f(x), g(x), and h(x) mod P . Call the resulting polynomials f̄(x), ḡ(x), and h̄(x). We
have f̄(x) = ḡ(x)h̄(x) in (R/P )[x].
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Since P is a prime ideal, R/P is an integral domain. Therefore, ldeg(f̄(x)) = ldeg(ḡ(x)) + ldeg(h̄(x)). But
f̄(x) = anx

n since a0, . . . , an−1 ∈ P and an 6= 0 (in R/P ) since an 6∈ P . Therefore, ldeg(f̄(x)) = n. Now since
ḡ(x)h̄(x) = f̄(x) 6= 0 and g(x)’s hence ḡ(x)’s non-zero coefficients have indices between 0 and m, we must have that
ldeg(ḡ(x)) ≤ m. Likewise, ldeg(h̄(x)) ≤ `. Therefore, since ldeg(ḡ(x)) + ldeg(h̄(x)) = ldeg(f̄(x)) = n = m + `, we
conclude ldeg(ḡ(x)) = m and ldeg(h̄(x)) = `. Thus deg(ḡ(x)) = ldeg(ḡ(x)) = m and deg(h̄(x)) = ldeg(h̄(x)) = `.
Therefore, ḡ(x) = Bxm and h̄(x) = Cx` for some B,C ∈ R/P .

But this implies that both ḡ(x)’s and h̄(x)’s constant terms are 0. Therefore, both b0 and c0 belong to P . But
this implies that a0 = b0c0 ∈ P 2 (contradiction). No such proper factorization can exist, so f(x) is irreducible. �

Corollary: (Eisenstein’s Criterion for Z[x]) Let f(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x] and suppose there is some

prime (integer) p such that p divides a0, a1, . . . , an−1 but p does not divide an and p2 does not divide a0. Then f(x)
is irreducible in Z[x] and hence irreducible in Q[x].

Note that proof of the final statement (irreducibility in Q[x]) requires Gauss’ Lemma. We will pass on this (for now).

Example: Consider f(x) = 10x5 + 7x4 − 14x2 + 49x + 21 ∈ Z[x]. Notice that p = 7 divides all but the leading

coefficient and p2 = 49 does not divide the constant term. Thus by Eisenstein’s criterion, f(x) is irreducible in Q[x].

For low degree polynomials, knowing whether they have a root or not, can determine irreducibility. First, we will
recall some basic results and then we return to irreducibility.

Theorem: (Division Algorithm) Let f(x), g(x) ∈ R[x] (where R is an integral domain) where the leading co-
efficient of g(x) is a unit (in particular, g(x) is not zero so it has a leading coefficient). Then there exists unique
q(x), r(x) ∈ R[x] such that f(x) = g(x) · q(x) + r(x) where either r(x) = 0 or deg(r(x)) < deg(g(x)).

We note that the division algorithm holds more generally than just over integral domains. However, if R is not
an integral domain, we can lose uniqueness of quotient and remainders. Also, when R is a field, demanding that
the leading coefficient is a unit is merely demanding that we divide by a non-zero polynomial (since all non-zero
coefficients are units). As a consequence, when F is a field, F[x] is a Euclidean domain (with degree function δ = deg).

Proposition: Let f(x) ∈ R[x] (where R is an integral domain). Then a ∈ R is a root of f(x) if and only if there

exists some g(x) ∈ R[x] such that f(x) = (x− a)g(x).

Proof: Obviously if f(x) = (x− a)g(x) then evaluating at x = a yields f(a) = (a− a)g(a) = 0. Now suppose a ∈ R
is a root of f(x). Since the leading coefficient of x − a is 1 (i.e., a unit), we can divide f(x) by x − a. Thus there
exists q(x), r(x) ∈ R such that f(x) = (x− a)q(x) + r(x) where either r(x) = 0 or deg(r(x)) < deg(x− a) = 1 (i.e.,
deg(r(x)) = 0). Either way, r(x) = c is a constant polynomial. Thus f(x) = (x − a)q(x) + c. Evaluating at x = a
yields, 0 = f(a) = (a− a)q(a) + c (since a is a root of f(x)). Thus c = 0 and so f(x) = (x− a)q(x) as desired. �

Let F be a field. Notice that constant polynomials are either zero or units (so not irreducible). Suppose f(x) ∈ F[x]
is reducible and deg(f(x)) > 0. Then since f(x) is non-constant, it must fail to be irreducible by factoring into a
product of some non-constant polynomials of lower degree. Keeping in mind that deg(g(x)h(x)) = deg(g(x)) +
deg(h(x)) for any polynomials g(x) and h(x) with coefficients in an integral domain, we get that linear polynomials
in F[x] must be irreducible (we can’t factor into non-constant polynomials of lower degree).

Next, suppose f(x) ∈ F[x] where deg(f(x)) = 2 or 3. Then any factorization into polynomials of smaller degree
would have to involve at least one factor of degree 1. Therefore, having a factorization is the same as having a root.
We get the following:

Proposition: Let F be a field and f(x) ∈ F[x]. If deg(f(x)) = 1 (i.e., f(x) is linear), then f(x) is irreducible. If

deg(f(x)) = 2 or 3 (i.e., f(x) is quadratic or cubic), then f(x) is irreducible if and only if f(x) has no roots in F.

While any polynomial of degree 4 or more with a root must be reducible (since roots yield linear factors), failing
to have roots doesn’t imply irreducibility anymore. As a simple example, x4 + 2x2 + 1 = (x2 + 1)2 is reducible in
Q[x] but it has no roots in Q (since ±i 6∈ Q).

Definition: We say that a root x = a of f(x) has multiplicity k if there exists some g(x) ∈ R[x] such that
f(x) = (x− a)kg(x) but g(a) 6= 0 (i.e., g(x) does not contain a x− a factor). Next, let f(x) = anx

n + · · ·+ a0. Then
we define f ′(x) = nanx

n−1 + · · ·+ 2a2x+ a1 (i.e., the formal derivative of f(x)).

It turns out that the formal derivative of polynomials in R[x] obeys the same linearity and product rules that our
usual derivative does. In particular, we have that if f(x) = (x−a)kg(x) , then f ′(x) = k(x−a)k−1g(x)+(x−a)kg′(x) =
(x − a)k−1(kg(x) + (x − a)g′(x)). In particular, if x = a is a root of f(x) of multiplicity k, then assuming k 6= 0 in
R, x = a is a root of f ′(x) of multiplicity k − 1.

2



Proposition: Let 0 6= f(x) ∈ R[x] (where R is an integral domain). Then f(x) has at most deg(f(x)) roots in

R (counting multiplicity).

Proof: Suppose f(x) has roots r1, . . . , r` with multiplicities k1, . . . , k`. Then f(x) = (x − r1)k1g(x) for some
polynomial g(x) where deg(g(x)) = deg(f(x)) − k1. Notice that if b is any other root (6= r1), we have 0 = f(b) =
(b − r1)k1g(b) where (b − r1)k1 6= 0. Thus g(b) = 0 and so r2, . . . , r` are roots of g(x). Ultimately, we get that
f(x) = (x − r1)k1 · · · (x − r`)k`h(x) for some h(x) ∈ R[x] where deg(h(x)) = deg(f(x)) − k1 − k2 − · · · − k`. Since
deg(h(x)) ≥ 0, we have k1 + · · ·+ k` ≤ deg(f(x)). �

Let’s see how to detect roots in certain circumstances.

Theorem: (Rational Root Theorem) Let f(x) = anx
n + · · · + a1x + a0 ∈ R[x] where R is an integral domain

with field of fractions F. Suppose p/q ∈ F for some p, q ∈ R, q 6= 0, and gcd(p, q) = 1 (i.e., p/q is a reduced fraction).
Then p/q is a root of f(x) implies p divides a0 and q divides an.

Proof: Suppose p/q is a reduced fraction and f(p/q) = 0. Then an

(
p

q

)n

+ · · · + a1

(
p

q

)
+ a0 = 0. Multiplying

this equation by qn to clear denominators, we get anpn + an−1p
n−1q+ · · ·+ a2p

2qn−2 + a1pq
n−1 + a0q

n = 0. Notice
that p(anpn−1 + an−1p

n−2q+ · · ·+ a2pq
n−2 + a1q

n−1) = anpn + an−1p
n−1q+ · · ·+ a2p

2qn−2 + a1pq
n−1 = −a0qn, so

p divides −a0qn. But p and q are relatively prime, so p must divide a0. Likewise, q must divide an. �

Example: Consider f(x) = x3−7x+6 ∈ Z[x]. If r = p/q is a rational root (written as a reduced fraction) of f(x),

then p must divide a0 = 6 (i.e., p = ±1,±2,±3, or ±6 and q must divide an = 1 (so q = ±1). Thus the only possible
(rational) roots of f(x) are ±1,±2,±3, and ±6. A (tedious) blind check shows that f(1) = f(2) = f(−3) = 0.
Therefore, f(x) = (x − 1)(x − 2)(x + 3). Notice that any rational root of a monic polynomial is in fact an integral
root!

Example: Consider f(x) = 2x3 + 5 ∈ Z[x]. Then p/q is a root of f(x) ∈ Q implies p divides 5 and q divides 2.

Thus the only possible rational roots are ±1, ±5, ±1/2, and ±5/2. Since (after a tedious check) we find that none of
these are roots of f(x), we must conclude f(x) has no roots in Q. Since f(x) is a cubic, we have that f(x) = 2x3 + 5
is irreducible in Q[x].

Corollary: Let p be a prime. Then
√
p and 3

√
p are irrational.

Proof: If
√
p was rational, we would have a rational root of x2−p. But the rational root theorem says that the only

possible rational roots of x2− p are ±1 and ±p. Notice that (±1)2− p = 1− p 6= 0 and (±p)2− p = p2− p 6= 0. Thus
x2 − p has no rational roots (it’s irreducible in Q[x]). In particular, its root x =

√
p cannot be rational. Likewise,

for 3
√
p consider the polynomial x3 − p. �

Corollary: Even better – Let p be a prime. Then n
√
p for any n > 1 is irrational.

Proof: Apply Eisenstein’s criterion to xn − p (using your prime p) and get that xn − p is irreducible in Q[x].
Therefore, it has no rational roots. Thus its root x = n

√
p cannot be rational. �

Sometimes reducing mod some ideal will turn an infinite problem into a finite tractable one. First, let R be a
commutative ring with 1 and I an ideal of R. Notice that we have a homomorphism from R[x] to (R/I)[x] where
anx

n + · · ·+ a0 maps to (an + I)xn + · · ·+ (a0 + I) (i.e., reduce coefficients mod I). Let f(x) denote the image of
f(x) under this homomorphism.

Proposition: Let I be an ideal of a UFD R. Suppose that f(x) = anx
n + · · ·+ a0 ∈ R[x] where n > 0, an 6∈ I,

and gcd(a0, . . . , an) = 1 (this last condition means f(x) is primitive). If f(x) is irreducible in (R/I)[x], then f(x) is
irreducible in R[x] (and thus in F[x] where F is the field of fractions of R).

Proof: First, we note (without proof) that for primitive polynomials, irreducibility in R[x] and irreducibility in F[x]
are equivalent. Also, a nonconstant primitive polynomial is reducible in R[x] if and only if it factors as a product of
nonconstant polynomials of lower degree. Now we are ready to proceed.

Suppose f(x) = g(x)h(x) where g(x) and h(x) are nonconstant polynomials in R[x]. Then f(x) = g(x)h(x) in
(R/I)[x]. Now since an 6∈ I, we have an+I 6= 0+I and so deg(f(x)) = deg(f(x)). Next, deg(f(x)) = deg(g(x)h(x)) =
deg(g(x)) + deg(h(x)) (since R is an integral domain we have that the degree of the product is the sum of degrees).
But deg(g(x)) ≤ deg(g(x)) and deg(h(x)) ≤ deg(h(x)) since reducing coefficients mod I can possibly lower degrees.
Thus deg(f(x)) = deg(g(x)) + deg(h(x)) ≥ deg(g(x)) + deg(h(x)) ≥ deg(g(x)h(x)) = deg(f(x)) (since in general the
degree of the product is only bounded by the sum of degrees – a lack of zero divisors is needed to guarantee equality).
If follows that deg(g(x)) = deg(g(x)) and deg(h(x)) = deg(h(x)). Thus f(x) properly factors in (R/I)[x]. �
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Example: Let’s show that f(x) = 2x3 + 6x2 − 15x+ 3 is irreducible in Q[x] using three techniques.

• Suppose p/q is a rational root (as a reduced fraction). Then, by the Rational Root Theorem, p divides 3 and
q divides 2. Thus p/q is ±1,±3,±1/2, or ±3/2. A very tedious calculation shows that none of these are roots.
Since our cubic polynomial has no roots in Q, it is irreducible in Q[x].

• Notice that p = 3 divides all but the leading coefficient of f(x) and p2 = 9 does not divide the constant term
3. Thus by Eisenstein’s criterion, f(x) is irreducible in Z[x] (and thus also Q[x]).

• If we reduce f(x) modulo 5, we get f(x) = 2x3 +x2 + 3. Plugging in x = 0, 1, 2, 3, and 4 yields f(x) = 3, 1, 3, 1,
and 2. Since (this cubic polynomial) f(x) has no roots in Z5, it is irreducible in Z5[x]. Applying our above
proposition (R = Z and I = (5)), we conclude that f(x) is irreducible in Z[x] (and thus in Q[x]).

Testing irreducibility of integral polynomials mod primes is often quite helpful. In fact, the factorization algo-
rithms of our computer algebra systems are built on this kind of thing. However, irreducibilty mod primes is not a
cure all. Dummit and Foote give the example: x4−72x+ 4. This polynomial is irreducible in Z[x] but it is reducible
in Zp[x] for every prime p.

Of course, there are many other ways to check for irreducibility. One more simple trick is to shift the indeterminate.
Notice that f(x) = g(x)h(x) if and only if f(x+ a) = g(x+ a)h(x+ a). From this we immediately get:

Proposition: Suppose a ∈ R and f(x) ∈ R[x]. Then f(x+ a) is irreducible if and only if f(x) is irreducible.

Corollary: For any prime integer p, the cyclotomic polynomial Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · · + x + 1 is

irreducible in Q[x].

Proof: Φp(x+ 1) =
(x+ 1)p − 1

(x+ 1)− 1
=

1

x
((x+ 1)p − 1) =

1

x

(
xp + pxp−1 +

(
p

2

)
xp−2 + · · ·

(
p

2

)
x2 + px+ 1− 1

)
Therefore, Φp(x+1) = xp−1+pxp−2+

(
p

2

)
xp−3+· · ·+

(
p

2

)
x+p. Notice that the binomial coefficient

(
p

k

)
=

p!

k!(p− k)!
when 1 ≤ k ≤ p− 1 must be divisible by p (since k < p and p− k < p implies k! and (p− k)! are products of integers
less than p). Thus we can apply Eisenstein’s criterion to Φp(x + 1) noting that all but the leading coefficient are
divisible by p and the constant term is not divisible by p2. Finally, since Φp(x+ 1) is irreducible, we also have that
Φp(x) is irreducible. �

There are also cyclotomic polynomials defined for non-prime indices. The general definition is that Φn(x) is the
product of x − ζ as ζ ranges over all primitive nth-roots of unity. Note: ζ is an nth-root of unity if ζn = 1. The
nth-roots of unity form a cyclic subgroup of order n of C× (under multiplication). An nth-root is primitive if it
generates this subgroup. For example, the 4th-roots of unity are {±1,±i}. This group is generated by ±i (so these
are the primitive 4th-roots of unity). Therefore, Φ4(x) = (x− i)(x+ i) = x2 + 1. When n is prime, all the nth-roots
of unity are primitive except for x = 1. This leads to our formula defined above. It turns out that all cyclotomic
polynomials are irreducible over Q[x]. These polynomials play an important role in Galois theory and number theory.

Addendum: One should distinguish between polynomials and polynomial functions. We say that a function f
from a ring to a ring is a polynomial function if there are a0, . . . , an ∈ R such that the formula f(x) = anx

n + · · ·+a0
defines our function f : R→ R. This might seem just like the definition of the polynomial g(x) = anx

n + · · ·+ a0 ∈
R[x], but there is a subtle difference. Both f(x) and g(x) are determined by their coefficients. However, while distinct
lists of coefficients yield distinct polynomials in R[x]. It is possible to have two distinct polynomial formulas for the
same polynomial function f !

Consider the following function f : Z2 → Z2 defined by f(x) = x2 + x + 1. Then f(0) = 02 + 0 + 1 = 1 and
f(1) = 12 + 1 + 1 = 1. Thus f(x) = 1 for all x ∈ Z2. So even though x2 +x+ 1 6= 1 as polynomials in Z2[x], we have
x2 + x+ 1 = 1 as polynomial functions.

But our intuition that we should be able to use polynomials formally and as functions interchangably is not that
far off. Consider the following:

Theorem: Let R be an infinite integral domain. Let f(x) = anx
n + · · · + a0 and g(x) = bmx

m + · · · + b0 be
polynomials in R[x]. Then f(r) = g(r) for all r ∈ R (i.e., f and g are equal as polynomial functions) if and only if
f(x) = g(x) as polynomials in R[x].

Proof: Obviously, if f(x) = g(x) in R[x], then they both define the same function. Suppose f(r) = g(r) for all
r ∈ R. Notice that if h(x) = f(x) − g(x) is non-zero, it can have at most deg(h(x)) roots (counting multiplicity).
But h(r) = f(r)− g(r) = 0 for all r ∈ R and R is infinite, so h(x) must be zero. Thus f(x) = g(x). �

On the other hand, if R is finite, say |R| = N , then there can be at most NN functions from R to R. Thus while
there are infinitely many elements in R[x] (as long as R 6= {0}), we can have no more than NN polynomial functions!
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