
Math 4720 & 5210 Cauchy and Sylow Abstract Algebra

Notation: In this handout G denotes a finite group of order n and p is a prime.

The Sylow theorems give us partial converses of Lagrange’s theorem. In particular, they give us information
about subgroups of prime power orders. There are many variant statements of the Sylow theorems and quite a
variety of proofs. Our route to proving (our versions of) the Sylow theorems starts with establishing a special case
of the first Sylow theorem called Cauchy’s theorem.

Theorem: (Cauchy’s Theorem) Suppose p divides the order of G. Then G has an element of order p.

Proof: This rather ingenious proof is due to James McKay.
Consider the following set: X = {(g1, g2, . . . , gp) | g1, . . . , gp ∈ G and g1g2 · · · gp = 1}. Notice that we can freely

choose g1, . . . , gp−1 ∈ G and then must have gp = (g1 · · · gp−1)
−1 to get (g1, . . . , gp) ∈ X. Therefore, |X| = |G|p−1.

In general, we can permute p-tuples of elements of G using permutations in Sp. Observe that g1g2 · · · gp = 1
implies g−1

1 (g1 · · · gp)g1 = g−1
1 1g1 so g2 · · · gpg1 = 1. This means we can cyclicly permute the p-tuples in X. Thus

the group C = ⟨(123 · · · p)⟩ acts on X. For example: (123 · · · p) • (g1, g2, . . . , gp−1, gp) = (g2, g3, . . . , gp, g1).
Now |C| = p and thus by the orbit-stabilizer theorem, orbits of this action must have cardinality 1 or p. Notice that

(1, 1, . . . , 1) ∈ X since 1 · · · 1 = 1 and {(1, 1, · · · , 1)} is this element’s orbit. Suppose this was the only singleton orbit.
Then we would have |X| = 1+ p+ p+ · · ·+ p ≡ 1 (mod p). However, |X| = |G|p−1 ≡ 0 (mod p) since |G| is divisible
by p. Therefore, X must have at least one more singleton orbit, say {(g1, . . . , gp)} where (g1, . . . , gp) ̸= (1, . . . , 1).
Now if this p-tuple is by itself in an orbit, we must have that (123 · · · p) • (g1, . . . , gp−1, gp) = (g2, . . . , gp, g1) equals
(g1, . . . , gp−1, gp). Therefore, g1 = g2 = · · · = gp. In other words, g1 ̸= 1 and (g1)

p = g1 · · · gp = 1. Thus g1 is an
element of order p. ■

What makes this proof rather ingenious is that McKay builds the set X from the group G and then acts on it
with a totally different group (i.e., C). His published proof is significantly shorter (less detailed) than mine above.

Definition: We say H is a p-group if the order of every element of H is a power of p. In particular, by Cauchy’s
theorem, H is a finite p-group if and only if |H| = pk for some k ≥ 0.

We need the following theorem and technical lemma to aid with our proofs of the Sylow theorems. First, suppose
G acts on a set X. For any subgroup H, let XH = {x ∈ X | h •x = x for all h ∈ H} (i.e., XH are the elements of X
that are fixed by elements of H).

Theorem: Let H be a finite p-group and suppose H acts on a finite set X. Then |X| ≡ |XH | (mod p).

Proof: We restrict from the action of G on X to the action of H on X. Then XH is the union of the singleton
orbits in X (since x ∈ XH implies h •x = x for all h ∈ H). Notice that since |H| = pk for some k ≥ 0, we must have
that the size of each orbit is a power of p. Therefore, since orbits partition X, |X| is the sum of 1’s (from singleton
orbits) and multiples of p. Thus |X| mod p is equivalent to the number of singleton orbits (i.e., |X| ≡ |XH | (mod
p)). ■

Let S be a subset of G and recall NG(S) = {g ∈ G | gSg−1 = S} is the normalizer of S in G. When G is finite,
we just need gSg−1 ⊆ S to get g ∈ NG(S) (since considering sizes guarantees equality). When the ambient group is
understood, we just write N(S).

Normalizers are an important tool in studying groups. For example, if H and K are subgroups of G, then H ◁K
if and only if K ⊆ NG(H). In other words, NG(H) is the largest subgroup of G in which H is a normal subgroup.
In particular, H ◁ G if and only if NG(H) = G.

We can let G act on its powerset P(G) (i.e., the set of all subsets of G) via conjugation: g •S = gSg−1 =
{gsg−1 | s ∈ S}. Notice that NG(S) is exactly the stabilizer of S under this conjugation action. We can also let G
act on its powerset via left multiplication. This action lets us establish the following lemma:

Lemma: Let H be p-subgroup of G (i.e., a subgroup and a p-group), then [NG(H) : H] ≡ [G : H] (mod p).

Proof: Let H act on
G
��
H

via left multiplication: h • gH = (hg)H where h ∈ H and gH ∈ G
��
H

. Then(
G
��
H

)
H

= {gH | hgH = gH for all h ∈ H} =
{
gH | g−1hg ∈ H for all h ∈ H

}
=

{
gH | g−1Hg ⊆ H

}
=

{
gH | g−1 ∈ NG(H)} = {gH | g ∈ NG(H)

}
=

NG(H)
��
H

where we used the fact that g−1 ∈ NG(H) if and only if g ∈ NG(H) (since normalizers are subgroups). There-
fore, using the above theorem we have [G : H] = |G/H| ≡ |(G/H)H | (mod p) and our above calculation implies
|(G/H)H | = |NG(H)/H| = [NG(H) : H]. ■
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Notation: Let |G| = n = pkm where k ≥ 0 and p does not divide m.

Definition: Let H be a subgroup of G. We say H is a Sylow p-subgroup if |H| = pk (i.e., the order of H is
the largest prime power dividing |G|).

The above definition is fine for finite groups. However, the general definition states that Sylow p-subgroups of
G are the maximal p-subgroups of G. In other words, H is a Sylow p-subgroup of G if given any p-subgroup of G,
say K, such that H ⊆ K, we have H = K. This means H is not contained in any bigger p-subgroup. It turns out
that once the Sylow theorems are established, when considering finite groups, our above definition matches this more
general definition.

The first Sylow theorem addresses a very reasonable question: Do Sylow p-subgroups even exist? The answer is Yes!

Theorem: (Sylow I) Let G be a group of order pkm where p is prime and does not divide m.

1. For each 0 ≤ ℓ ≤ k, there exists a subgroup H of G of order pℓ.

2. Suppose H is a subgroup of G of order pℓ where 0 ≤ ℓ < k. Then there exists a subgroup K of G of order pℓ+1

such that H ◁K.

In other words, p-subgroups for every prime power divisor of our group’s order exist and every p-subgroup is contained
in a Sylow p-subgroup.

Proof: We proceed via induction. The trivial subgroup {1} has order p0 = 1 (this is our base case). Suppose
we have a subgroup H of order pℓ where 0 ≤ ℓ < k. Then [G : H] = pk−ℓm is divisible by p. Using our lemma

above, we have [NG(H) : H] ≡ [G : H] = 0 (mod p). Therefore, the order of
NG(H)

��
H

is divisible by p. Since

H ◁ NG(H) (subgroups are normal in their normalizers), we have a quotient group whose order is divisible by a

prime p. Therefore, by Cauchy’s theorem there exists some xH ∈ NG(H)
��
H

of order p. By the lattice isomorphism

theorem, the cyclic subgroup ⟨xH⟩ must be of the form ⟨xH⟩ =
K
��
H

for some subgroup K of NG(H). Thus

[K : H] = |⟨xH⟩| = p. Therefore, |K| = [K : H] · |H| = p · pℓ = pℓ+1. Thus K is a subgroup of G of order pℓ+1.
Moreover, K ⊆ NG(H) so H ◁K. The theorem now follows by induction on ℓ. ■

We note that when p does not divide the order of the group (i.e., |G| = p0m), our Sylow p-subgroup is just the
trivial subgroup {1}. So Sylow p-subgroups exist for all primes, but they are only interesting when p is a divisor of
the group’s order.

Now that we know Sylow p-subgroups exist we establish some more notation.

Notation: Let Sylp be the set of and np = |Sylp| the number of Sylow p-subgroups of G.

The first Sylow theorem tells us that np > 0. The second Sylow theorem tells us that for a fixed prime p all the
Sylow p-subgroups have the same structure.

Theorem: (Sylow II) Let P,Q ∈ Sylp. Then there exists x ∈ G such that Q = xPx−1.
In other words, any two Sylow p-subgroups are conjugate.

Proof: Let P,Q ∈ Sylp. We let Q act on
G
��
P

(the left cosets of P in G) by left multiplication: g •xP = (gx)P .

Since Q is a p-group, the preliminary theorem says

∣∣∣∣∣
(
G
��
P

)
Q

∣∣∣∣∣ ≡
∣∣∣∣G��P

∣∣∣∣ = [G : P ] = m (mod p). Recall that p does

not divide m, so the cardinality of

(
G
��
P

)
Q

must be non-zero. Let xP ∈
(
G
��
P

)
Q

. This means that qxP = xP

for all q ∈ Q. Thus x−1qx ∈ P for all q ∈ Q. In other words, x−1Qx ⊆ P . But |x−1Qx| = |Q| = |P | = pk (since
conjugation is an automorphism and thus preserves cardinalities). Therefore, x−1Qx = P . ■

Consequently, any Sylow p-subgroup is carried to any other Sylow p-subgroup via some inner automorphism.
This means that every subgroup in Sylp must have the same group structure (i.e., they are all isomorphic).

We note that Sylow II is commonly stated as “Given any p-subgroup H and Sylow p-subgroup K, there exists
some x ∈ G such that xHx−1 ⊆ K.” This version of the second Sylow theroem follows from our Sylow I and II.

The final Sylow theorem allows us to get a handle on exactly how many Sylow p-subgroups exist. This often puts
enough of a restriction on what a group of a particular order can look like that we can classify all groups of that
order.
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Theorem: (Sylow III) Recall that np is the number of Sylow p-subgroups of G. Then np ≡ 1 (mod p) and

np = [G : NG(P )] for any P ∈ Sylp. In particular, np must divide
n

pk
= m.

Proof: Let P ∈ Sylp and we let P act on Sylp via conjugation: x •Q = xQx−1 for any x ∈ P and Q ∈ Sylp. Then
since P is a p-group, we can apply our preliminary thereom and get np = |Sylp| ≡

∣∣∣(Sylp)P ∣∣∣ (mod p). Note that(
Sylp

)
P
= {Q ∈ Sylp | x •Q = Q for all x ∈ P} = {Q ∈ Sylp | xQx−1 = Q for all x ∈ P}

= {Q ∈ Sylp | x ∈ NG(Q) for all x ∈ P} = {Q ∈ Sylp | P ⊆ NG(Q)}

We note that if Q is a Sylow p-subgroup of G and Q ⊆ K ⊆ G for some subgroup K, then Q is a Sylow p-subgroup
of K since if a larger power of p than |Q| = pk divided |K|, then by Lagrange’s theorem this power would also divide
|G| contradicting pk being the largest such power.

We now know that if Q ∈
(
Sylp

)
P
, then P ⊆ NG(Q) and so both P and Q are Sylow p-subgroups of NG(Q). By

the second Sylow theorem P = xQx−1 for some x ∈ NG(Q). But Q◁NG(Q) and so P = xQx−1 = Q. Therefore, we

have that
(
Sylp

)
P
= {P}. Thus np ≡

∣∣∣(Sylp)P ∣∣∣ = 1 (mod p).

For our second fact about np we note that G acts on Sylp via conjugation as well. By the second Sylow thereom
(i.e., all Sylow p-subgroups are conjugate), we have that Sylp is a single orbit under this action. Also, the stabilizer
of some P ∈ Sylp is by definition

stabG(P ) = {g ∈ G | g •P = P} = {g ∈ G | gPg−1 = P} = {g ∈ G | g ∈ NG(P )} = NG(P )

Thus by the orbit-stablizer theorem, |np| = |Sylp| = |orbit(P )| = [G : stab(P )] = [G : NG(P )]. Since |G| = [G :

NG(P )] · |NG(P )| and P ⊆ NG(P ), we have pk divides |NG(P )| and so np = [G : NG(P )] must divide n/pk = m. ■

Example: Suppose G is a group of order 15. Then n3 ≡ 1 (mod 3) and n3 must divide 15/3 = 5. Therefore,

n3 = 1. Likewise, n5 ≡ 1 (mod 5) and n5 must divide 15/5 = 3. Therefore, n5 = 1 as well. Notice that any element
of order 3 must live in a Sylow 3-subgroup (in fact, since Sylow 3-subgroups have order 3 here, such an element must
generate a Sylow 3-subgroup). Since there is only n3 = 1 Sylow 3-subgroup, we must have exactly 3−1 = 2 elements
of order 3. Likewise, we have exactly 5 − 1 = 4 elements of order 5. Therefore, we have a total of 1 + 2 + 4 = 7
elements of orders 1, 3, and 5. The remaining 15 − 7 = 8 elements must have order 15 (this is the only possibility
left by Lagrange’s theorem). Since G has elements of order 15, it is cyclic (i.e., |G| = 15 implies G ∼= Z15).

We record the following useful fact:

Proposition: If Sylp = {P} (i.e., there is a unique Sylow p-subgroup so np = 1), then P ◁ G.

Proof: Let x ∈ G, then xPx−1 is a subgroup of G. Since conjugation preserves cardinalities, |xPx−1| = |P | = pk.
Thus we have that xPx−1 is a Sylow p-subgroup of G. By the assumed uniqueness, xPx−1 = P and so P ◁ G. ■

Proposition: If G is a simple p-group, then G is cyclic of prime order. In other words, there are no non-Abelian

simple p-groups.

Proof: Suppose G is a simple group of order pk for some k ≥ 0. The trivial group (order p0 = 1) is not simple by
definition so k > 0. If k = 1, |G| = p is prime and thus G is cyclic of prime order. Therefore, let k > 1.

[Proof #1:] Notice G itself is its Sylow p-subgroup. By Sylow I part (2), we have a normal subgroup of order
pk−1. Since k > 1 this is a non-trivial proper normal subgroup (i.e., G is not simple). [Proof #2:] From the class
equation, we know that p-groups must have a non-trivial center. Therefore, since the center, Z(G), is a normal
subgroup and G is simple, we must conclude that Z(G) is not a proper subgroup (i.e., G = Z(G)). Therefore, G
is Abelian. But Cauchy’s theorem implies that we have an element of order p. This generates a cyclic subgroup of
order p. Since p < pk and all subgroups of Abelian groups are normal, G has a proper non-trivial subgroup. Thus it
is not simple – contradiction. ■

Corollary: Let p and q be primes. There are no simple groups of order pq.

Proof: Suppose G is a simple group of order pq. The above proposition rules out p = q (i.e., pq = p2), so p ̸= q.
We know that np = 1 or nq = 1 imply we have a normal Sylow p-subgroup or q-subgroup. Sylow’s third

theorem tells us that np must divide pq/p = q so we must have np = q. Likewise, we must conclude nq = p.
Recall that groups of prime order are generated by any of their non-identity elements. Thus distinct subgroups of
prime orders can only overlap at the identity. Therefore, np = q subgroups of order p imply that G has q(p − 1)
elements of order p. Likewise, G must have p(q − 1) elements of order q. Adding in the identity, this accounts for
q(p− 1) + p(q − 1) + 1 = pq + (pq − p− q) + 1 elements of G. If p < q, then pq − p− q > pq − q − q ≥ 2q − 2q = 0
similarly if q < p. In other words, G has at least pq + 1 elements – contradiction. ■
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Corollary: Let p and q be primes. There are no simple groups of order p2q.

Proof: Suppose G is a simple group of order p2q. Again, if p = q, then |G| = p3 and by the above proposition G is
not simple. Therefore, p ̸= q.

We know that np = 1 or nq = 1 imply we have a normal Sylow p-subgroup or q-subgroup. Sylow’s third theorem
tells us that np must divide q and nq must divide p2. Also, the theorem says that np ≡ 1 (mod p) and nq ≡ 1 (mod
q). Notice that p > q implies np = q ̸≡ 1 (mod p). Therefore, we must have that p < q. Thus we cannot have nq = p
since p ̸≡ 1 (mod q) if p < q. Thus we must have nq = p2.

We have p2 subgroups of order q. As before, these can only overlap at the identity. Therefore, elements of order
q account for p2(q − 1) = p2q − p2 elements of our group. This only leave room for one subgroup of order p2 (i.e.,
np = 1) – contradiction. ■

In fact, one can prove that there are no simple groups of order pkqℓ (given we don’t have k = 0 and ℓ = 1 or k = 1
and ℓ = 0). This is called Burnside’s theorem and is significantly more difficult to prove. The standard proof uses
a significant amount of group representation theory and we shall not pursue that here. Thus a non-Abelian simple
group must have an order involving at least 3 primes.

The celebrated and incredibly difficult Feit-Thompson odd order theorem says that every non-Abelian simple
group must be of even order. Their proof occupied an entire issue of a journal (over 200 pages long). This very long,
very technical proof has not been meaningfully simplified or shortened even now over 50 years later. Oddly, once
one knows that a non-Abelian simple group must have even order, it is easy to show that in fact its order must be
divisible by either 8 or 12.

Let us use the Sylow theorems to classify groups of order 2p.

Theorem: Let p be a prime. Groups of order 2p are either cyclic or dihedral. In other words, if G is a group of
order 2p, then either G ∼= Z2p or G ∼= Dp.

Proof: We recall the generator and relation definition of the dihedral groups: Dn = ⟨x, y | xn = 1, y2 = 1, (xy)2 = 1⟩.
Consider the case p = 2: If |G| = 2p = 4, then G is Abelian and so G is either cyclic or isomorphic with the Klein

4-group. Notice that D2 = {1, x, y, xy} is just the Klein 4-group since x2 = y2 = (xy)2 = 1.
Now let p be an odd prime. We have that np ≡ 1 (mod p) and n2 divides |G|/p = 2. Therefore, np = 1 so we

have a unique (normal) Sylow p-subgroup, say P . Now |P | = p so that P is a group of prime order. Consequently
P is cyclic. Let x ∈ G such that P = ⟨x⟩. We note that any element of order p must be contained in a Sylow
p-subgroup. Since P is the only Sylow p-subgroup, we have that G has exactly p − 1 elements of order p (they are
precisely: x, x2, . . . , xp−1).

Next, n2 ≡ 1 (mod 2) and n2 must divide |G|/2 = p. Therefore, either n2 = 1 or n2 = p.
� Case 1: n2 = 1. Then there is a unique (normal) Sylow 2-subgroup, say Q. Similar to P , Q contains the
identity plus every element of order 2. Since |Q| = 1, there is exactly 1 element of order 2.

Lagrange’s theorem tells us that the elements of G must be of orders 1, 2, p, and 2p. Since we have 1 element
of order 1, 1 element of order 2, and p − 1 elements of order p, we must have 2p − 1 − 1 − (p − 1) = p − 1
elements of order 2p. Since G has elements of order 2p, it is cyclic.

� Case 2: n2 = p. Let Syl2 = {Q1, . . . , Qp}. These Sylow 2-subgroups of G are of order 2. Such groups look like
Qi = ⟨yi⟩ = {1, yi} where y2i = 1. Considering the identity plus the p− 1 elements of order p account for p ele-
ments of our group, these elements of order 2 exhaust the rest of G. Thus G = {1, x, x2, . . . , xp−1, y1, y2, . . . , yp}.
Let y = y1. Notice that xky ̸= xℓ for any ℓ since otherwise, y = x−kxℓ = xℓ−k has order 1 or p contradicting
|y| = 2. Therefore, xky must one of the yi’s. Also, xky = xℓy imples xk = xℓ and so k ≡ ℓ (mod p) since |x| = p.
Thus y, xy, . . . , xp−1y are exactly our elements of order 2. We have G = {1, x, . . . , xp−1, y, xy, . . . , xp−1y} where
xp = 1, y2 = 1, and (xy)2 = 1 (since xy has order 2). Therefore, G ∼= Dp is dihedral. ■

We end with a somewhat unrelated but useful result generalizing the index 2 theorem: Index 2 implies normal.

Theorem: Let H be a subgroup of G such that [G : H] = p is the smallest prime divisor of |G|. Then H ◁ G.

Proof: Let G act on G/H via left multiplication. Since |G/H| = [G : H] = p, this action yields a permutation
representation φ : G → Sp. Now φ(G) is a subgroup of Sp so its order divides p!. But we also know |G| =
|Ker(φ)| · |φ(G)|. Thus |φ(G)| divides both |G| and |Sp| = p!. Therefore, any prime dividing |φ(G)| must divide both
|G| and p!. The prime divisors of p! are p and smaller with p dividing once. Since p is the smallest prime dividing
|G|, we have that the only possible prime dividing |φ(G)| is p itself (and at most once). Thus either |φ(G)| = 1 or p.

Note that k ∈ Ker(φ) implies k acts as the identity on G/H (i.e., kxH = xH for all x ∈ G). In particular,
kH = H so that k ∈ H. Therefore, Ker(φ) ⊆ H. Notice that |φ(G)| = 1 would imply |Ker(φ)| = |G|/1 = |G| so that
G = Ker(φ) ⊆ H ̸= G (impossible). Thus we must conclude that |φ(G)| = p. Therefore, |Ker(φ)| = |G|/p = |H|.
Therefore, since Ker(φ) ⊆ H, we must conclude H = Ker(φ) ◁ G. ■

4


