
Math 4720 & 5210 Some Field Theory Abstract Algebra

Notation: In this handout, F, K, and L denote fields.

Definition: Let R be a ring with 1. The smallest subring containing 1 is called the prime subring of R.

Let ϕ : Z → R be defined by ϕ(n) = n1 (i.e., the nth additive power of the multiplicative identity of R). For
example, ϕ(3) = 3(1) = 1+1+1 and ϕ(−2) = −2(1) = (−1)+(−1). Since (n+m)1 = n1+m1 and (nm)1 = n1 ·m1
for any m,n ∈ Z (these are laws of additive exponents), we have that ϕ is a ring homomorphism (and ϕ(1) = 1).
Notice that ϕ(Z) is the prime subring of R. Moreover, since Z is a PID, the kernel of ϕ is a principal ideal: there
exists n ∈ Z such that ker(ϕ) = (n). Since (n) = (−n), we can assume n ≥ 0.

Definition: This non-negative integer generator the kernel is the characteristic of R: char(R) = n.

Calling on the first isomorphism theorem, we have Z/(char(R)) = Z/ker(ϕ) ∼= ϕ(Z). In other words, the prime
subring of R is isomorphic to Zn when char(R) = n > 0 and the prime subring is isomorphic to Z when char(R) = 0.

Notice that char(R) = 1 means 1 = 0 and so R = {0}. Also, if char(R) = n = ab for a, b > 1, then a1 · b1 =
(ab)1 = n1 = 0 and a1, b1 are non-zero since a, b < n and the characteristic is the smallest positive (additive) power
of 1 that equals 0. In other words, rings with composite characteristics must have zero divisors.

Corollary: Let R be an integral domain. Then char(R) is either zero or prime. In particular, fields must be of

zero or prime characteristic.

Identification: We identify the prime subring of a ring of characteristic n with Zn if n > 0 and Z if n = 0.

Thus using this identification, we have that every integral domain contains a copy of Z or Zp for some prime
p. When we have a field, each non-zero element must have an inverse, so a field containing a copy of Z must also
contain a copy of Q. Thus if char(F) = p > 0 (p must be prime), then the prime subring of F is actually the prime
subfield of F, namely Zp. If char(F) = 0, then the prime subring of F is Z and its prime subfield (i.e., its smallest
subfield) is Q.

Remark: While having characteristic n > 0, brings to mind finite rings like Zn or (Zn)3×3, having a positive
characteristic n > 1 does not preclude being an infinite ring. For example, Zn[x] is an infinite ring of characteristic
n. [Characteristic 1 always means our ring is trivial, {0}, since 1 = 0.] Also, notice that for any prime p, Zp(x) (i.e.,
ratios of polynomials drawn from Zp[x]) gives us an infinite field of characteristic p.

Definition: Recall from linear algebra that a vector space V over a field F is an Abelian group (V,+) equipped
with a scalar multiplication (s, v) 7→ sv where s ∈ F and v ∈ V such that for all v, w ∈ V and s, t ∈ F, we have
1v = v, s(tv) = (st)v, (s+ t)v = sv + tv, and s(v + w) = sv + sw.

While introductory linear algebra courses usually stick to working over the real numbers (i.e., F = R), most all
of the results covered in such a course work over any field. In particular, there is a well-defined notion of dimension.
If V is a vector space over F, then dimF(V ) is the size of any (hence all) bases for V (working over F). For example,
C = {a + bi | a, b ∈ R} has basis {1, i} over R and {1} working over itself. In particular, dimR(C) = 2 and
dimC(C) = 1. We could also note that dimQ(C) is infinite (specifically c = 2ℵ0 continuum in dimension)!

Definition: Let F ⊆ K. Then we say F is a subfield of K and K is an extension field of F. Oddly, this is often
denoted K/F even though this has nothing to do with quotients or cosets. Notice that K (or any ring containing F)
can be thought of as a vector space over F (it’s an Abelian group and we can “scale” (i.e., multiply) elements of K
by elements of F). We call [K : F] = dimF(K) the degree of the extension.

Theorem: Finite Fields has Prime Power Orders: Let F be a finite field. Then |F| = pk for the prime p = char(F)
and some positive integer k.

Proof: Let F be a finite field. Thus F cannot contain an infinite set, so it cannot contain a copy of Q. Thus its
prime subfield must be Zp where char(F) = p. Now we have that F is an extension field of its prime subfield. Again,
F is finite so [F : Zp] = dimZp

(F) = k <∞. Recall that any vector space V of dimension n <∞ over some field K is
isomorphic (as a vector space) to Kn. Thus F ∼= (Zp)k (as vector spaces). Therefore, |F| = |Zp|k = pk. �

Theorem: (The Degree Formula) Let L extend K which extends F. Then [L : F] = [L : K] · [K : F].

Proof: Let α be a basis for L working over K and β be a basis for K working over F. Consider γ = α ·β = {uv | u ∈
α and v ∈ β}. We show that γ is a basis for L working over F.
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Suppose that
∑
i,j cijuivj = 0 for some finite linear combination of uivj drawn from γ (i.e., ui ∈ α and vj ∈ β)

and scalars cij ∈ F. Then
∑
i(
∑
j cijvj)ui = 0 where

∑
j cijvj ∈ K. We have that the ui’s are linearly independent

over K. Thus for each i, we have
∑
j cijvj = 0. But the vj ’s are linearly independent over F. Thus for each i, cij = 0

for all j. Therefore, we have that γ is linearly independent.
Next, suppose x ∈ L. Then x =

∑
i yiui for some ui’s in α and yi ∈ K (since α is a basis for L over K). For

each i, yi =
∑
j cijvj for some vj ’s in β and cij ∈ F (since yi ∈ K and β is a basis for K over F). Therefore,

x =
∑
i yiui =

∑
i(
∑
j cijvj)ui =

∑
i,j cijuivj and thus x lies in the span of γ.

Therefore, γ is a linearly independent (over F) and spanFγ = L. We have that it is a basis for L over F.
Finally, notice that |γ| = |α| · |β|: If uivj = ukv`, we must have vj = v` and ui = uk since v’s belong to K and

the u’s are a basis over K and working over a basis coordinates (i.e., coefficients of u’s) must match. �

Proposition: Let 0 6= f(x) ∈ F[x] and let n = deg(f(x)).

Then, working over F, {1 + (f(x)), x+ (f(x)), . . . , xn−1 + (f(x))} is a basis for
F[x]

��
(f(x))

.

Proof: Let g(x) ∈ F[x]. There are unique polynomials q(x), r(x) ∈ F[x] where r(x) = 0 or deg(r(x)) < deg(f(x)) = n
such that g(x) = q(x)f(x) + r(x). Therefore, there is a unique polynomial r(x) where r(x) = 0 or deg(r(x)) < n
such that g(x) + (f(x)) = r(x) + (f(x)). In other words, every coset in F[x]/(f(x)) has a unique representation
as a0 + a1x + · · · + an−1x

n−1 + (f(x)) for some a0, . . . , an−1 ∈ F. Existence of these scalars a0, . . . , an−1 implies
our proposed basis is spans the quotient, and the uniqueness of these scalars implies the proposed basis is linearly
independent. �

For example, Q[x]/(x2 − 1) has a basis {1 + (x2 − 1), x+ (x2 − 1)} working over Q. Notice that F[x]/(0) ∼= F[x]
has the standard basis {1, x, x2, . . . } and thus is a countable dimensional vector space over F.

Another example, Q[x]/(x4−1) = {a3x3 +a2x
2 +a1x+a0 + (x4−1) | a3, a2, a1, a0 ∈ Q} and a3x

3 +a2x
2 +a1x+

a0 + (x4 − 1) = b3x
3 + b2x

2 + b1x+ b0 + (x4 − 1) if and only if a3 = b3, a2 = b2, a1 = b1, and a0 = b0. Similarly, this
is why Q[x]/(x3 − 2) ∼= Q[ 3

√
2] = {a+ b 21/3 + c 22/3 | a, b, c ∈ Q} and [Q[ 3

√
2] : Q] = 3.

Definition: Let K extend F and suppose α ∈ K. If there exists some 0 6= f(x) ∈ F[x] such that f(α) = 0, we
say α is algebraic over F. If no such polynomial exists, α is transcendental over F.

If no base field is mentioned, we usually assume one means that α is algebraic or transcendental over Q. For
example,

√
2 is algebraic (over Q) since it is the root of x2−2. It can be shown (through fairly technical calculations)

that both π and Euler’s number e are transcendental (over Q). Notice that π and e are algebraic over R – they’re
roots of x− π and x− e in R[x] respectively. Base fields matter!

One can also speak over algebraic or transcendental functions. Here the base field is usually assumed to be C(x)
(i.e., ratios of complex polynomials). Notice that

√
x is a root of Y 2 − x ∈ (C(x))[Y ]. Thus

√
x is an algebraic

function. On the other hand, it is possible to show that sin(x), cos(x), and ex are transcendental functions (working
over C(x)).

Suppose that α ∈ K is algebraic over F. Then I = {f(x) ∈ F[x] | f(α) = 0} is a non-zero ideal of F[x] (Why?
If f(α) = 0 and g(α) = 0, then (f − g)(α) = f(α) − g(α) = 0 − 0 = 0 so f − g ∈ I and if f(α) = 0 then
hf(α) = h(α)f(α) = h(α) · 0 = 0 for any h(x) ∈ F[x]). But F[x] is a PID, so I must have a non-zero generator, say
I = (m(x)). We know that a generator for an ideal in a Euclidean domain is an element of lowest degree in that
ideal. Moreover, associates generate the same ideal, so one can assume m(x) is monic. This leads to the following
definition:

Definition: Let α ∈ K be algebraic over F. The monic generator of I = {f(x) ∈ F[x] | f(α) = 0} (i.e., the lowest
degree, monic polynomial in F[x] with root α) is called the minimal polynomial for α (over F).

Proposition: Minimal polynomials are irreducible.

Proof: Suppose m(x) is the minimal polynomial for α working over F. Since m(x) is non-zero and has a root α, it
is a non-zero constant polynomial (i.e., not zero or a unit in F[x]). Thus if it is not irreducible, it must have a proper
factorization, say m(x) = p(x)q(x). But 0 = m(α) = p(α)q(α). Thus either p(α) = 0 or q(α) = 0. However, m(x) is
the lowest degree polynomial with root α. Therefore, no such proper factorization can exist! �

Example: The minimal polynomial of 3
√

5 is x3 − 5 if we are working over Q. On the other hand, it’s x− 3
√

5 if

we’re working over R.

Theorem: Let α be algebraic over F with minimal polynomial m(x). Then F[x]/(m(x)) ∼= F[α] and [F[α] : F].
In other words, the degree of the extension is the same as the degree of the element’s minimal polynomial.
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Proof: Consider ϕ : F[x]→ K where ϕ(f(x)) = f(α). Then ϕ is a homomorphism whose kernel is the ideal generated
by α’s minimal polynomial and the image of ϕ is nothing more than the subfield of K generated by F and α (i.e.,
F[α]). The result follows from the first isomorphism theorem. �

If one tries this with a transcendental element α, one finds that F[x] ∼= F[x]/(0) ∼= F[α]. Thus adjoining a
transcendental element does not yield a field (just an integral domain). In fact, working over F, α is algebraically
indistinguishable from an intedeterminate like x. In particular, Q[π] 6= Q(π) (i.e., the ring adjoining π to Q is not
the same as the field generated by Q and π). Also, Q[π] ∼= Q[x]. In fact, one could define algebraic: any element α
such that F[α] = F(α) whereas transcendental means F[α] 6= F(α).

Example: We have that
√

2 is algebraic over Q since it is a root of x2 − 2 (this is
√

2’s minimal polynomial over

Q). We have that {1,
√

2} is a basis for Q[
√

2] working over Q and that [Q[
√

2] : Q] = 2. Likewise, 3
√

5 is algebraic
over Q[

√
2] with minimal polynomial x3 − 5 (notice that x3 − 5 has no roots of the form a + b

√
2 where a, b ∈ Q).

Thus {1, 3
√

5, ( 3
√

5)2} is a basis for Q[
√

2, 3
√

5] working over Q[
√

2] and [Q[
√

2, 3
√

5] : Q[
√

2]] = 3. The degree formula
(and its proof) then tell us that {1,

√
2, 3
√

5, 3
√

5 ·
√

2, ( 3
√

5)2, ( 3
√

5)2 ·
√

2} is a basis for Q[
√

2, 3
√

5] working over Q and
that [Q[

√
2, 3
√

5] : Q] = [Q[
√

2, 3
√

5] : Q[
√

2]] · [Q[
√

2] : Q] = 3 · 2 = 6.

Definition: Let K extend F. We say that K is a finite extension of F if [K : F] < ∞. If every element of K is
algebraic over F, we say that K is an algebraic extension of F.

Theorem: Finite extensions are algebraic

Proof: Let [K : F] = n < ∞ and let α ∈ K. Then {1, α, α2, . . . , αn} must be linearly dependent (if not, we would
have a linearly independent set with more than n = dimF(K) elements). Thus there exists scalars a0, . . . , anF (not
all zero) such that a0 + a1α + · · · + anα

n = 0 (i.e., α is the root of some non-zero polynomial). This means α is
algebraic over F. �

The converse of this theorem is not true. For example, Q = {α ∈ C | α is algebraic over Q}, called the field of
algebraic numbers, is an infinite extension of Q. But it is algebraic over Q.

Let f(x) ∈ F[x] be a non-constant polynomial. Let g(x) be an irreducible factor of f(x). Then K =
F[x]

��
(g(x))

is

a field containing a copy of F. Moreover, α = x+ (g(x)) is a root of g(x) in K since g(x+ (g(x))) = g(x) + (g(x)) =
0 + (g(x)). Thus we write: K = F[α] where α is some root of g(x). By iterating this process one can extend F to a
field L such that L contains all of the roots of f(x). Moreover, constructing L this way we have L = F[α1, . . . , αn]
where f(x) = (x− α1) · · · (x− αn). We have just constructed the splitting field of f(x) (over F).

Definition: Let f(x) ∈ F[x]. Suppose L is an extension of F such that f(x) = (x − α1) · · · (x − αn) and
L = F[α1, . . . , αn] (i.e., f(x) splits into linear factors in L[x] and L is generated by the roots of f(x) and F). Then
L is called the splitting field for f(x) (working over F).

The discussion above this definition shows that splitting fields always exist. We state without proof:

Theorem: Splitting fields are unique up to isomorphism. In particular, given f(x) ∈ F. Suppose L =
F[α1, . . . , αn] and K = F[β1, . . . , βn] are splitting fields. Then there is some permutation σ ∈ Sn such and an
isomorphism ϕ : L → K such that ϕ(x) = x for all x ∈ F and ϕ(αj) = βσ(j) (i.e., F is fixed pointwise and roots of
f(x) map to roots of f(x)).

For example, Q[i,
√

5] is a splitting field for f(x) = (x2 + 1)(x2 − 5) (working over Q). The splitting field for
x2 − 5 over Q is Q[

√
5] whereas the splitting field for x2 − 5 over R is just R (x2 − 5 already splits in R[x]). The

splitting field for x2 + 1 over R is R[i] = C.
The proof of the above theorem is not that difficult, but it would require us setting up a fair amount of machinery.

This kind of result is really the first step toward developing Galois theory.

Definition: We say that F is algebraically closed if every non-constant polynomial f(x) ∈ F[x] has a root in F.

Equivalently, in F[x], any irreducible polynomial must be linear.

While we will not pursue this here, it can be shown that every field F is contained in an algebraically closed
field (essentially one just takes each irreducible polynomial in F[x] and tacks on all of its roots). It’s essentially the
union of all of the splitting fields (but “union” and “all” must be dealt with carefully). The smallest (in terms of
containment) algebraically closed field containing F is called its algebraic closure. Much like splitting fields, it can
be shown that algebraic closures are unique up to isomorphism (fixing F pointwise). The algebraic closure of F is
denoted by F.
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The fundamental theorem of algebra states that C is algebraically closed, so R = C. The algebraic closure of
the rational numbers, denoted Q, is called the field of algebraic numbers (mentioned above). Note that Q ( C. For
example, π 6∈ Q. In fact, C is continuum in size while Q is only countable.

Theorem: Finite subgroups of F× must be cyclic. Moreover, for every positive integer n, there is at most one
subgroup of order n.

Proof: Let G be a finite subgroup of F×, say |G| = n <∞.

Lemma: Let a ∈ G be an element of maximal order |a| = m in a finite Abelian group. If b ∈ G, then |b| divides m.

Let d = gcd(|b|,m). Then let c = bd so |c| = |b|/d and thus the orders of c and a are relatively prime. Now
suppose (ac)` = 1. Since G is Abelian, 1 = (ac)` = a`c` so that a` = c−`. Since x = a` = c−` is a power of a and a
power of c, its order divides both m and |c|. But m and |c| are relatively prime. Therefore, the order of x = a` = c−`

is 1 and so a` = 1 = c`.
Thus the smallest positive power such that (ac)` = 1 is the smallest power such that a` = c` = 1. This must be

lcm(m, |c|) (≥ m). But the order of a (i.e., |a| = m) is maximal. Therefore, lcm(m, |c|) = m and since m and |c| are
relatively prime, we have |c| = 1 (i.e., bd = 1) and so the order of b divides m.�

Back to proving our theorem. We now know that the order of every element in G divides some maximal order m
(which by Lagranges theorem divides |G| = n). Therefore, for all g ∈ G, we have gm = 1 so gm − 1 = 0. Thus every
element of G is a root of xm − 1 (i.e., xm − 1 has at least n roots). On the other hand, xm − 1 cannot have more
than deg(xm − 1) = m roots. Therefore, we have m ≥ n. However, m ≤ n since m divides n. Thus m = n (i.e., the
maximal element order is |G| = n). Hence G is cyclic.

Now suppose H and G both have order n. Thus all of there elements are roots of xn − 1. If H 6= G, then xn − 1
would have too many roots! Thus H = G. �

Corollary: The group of units of a finite field must be cyclic.

In R, the only elements of finite (multiplicative) order are ±1. Thus the only possible elements of finite subgroups
of R× are ±1. Note that the only finite subgroups of R× are thus {1} and {1,−1} (both cyclic). In C, there is a
finite subgroup of every positive integer order n. In fact, the unique subgroup of order n is exactly the nth-roots of
unity. A generator of such a subgroup is called a primitive nth-root.

If F is a finite field, one calls ζ ∈ F a primitive element if 〈ζ〉 = F× (i.e., it generates the group of units of our
finite field). While the above corollary guarantees these elements exist, there is no nice way of finding them (i.e., we
are stuck just blindly searching).

Theorem: There is a unique finite field of order pk for every prime p and positive integer k. In particular, the

field of order pk, denoted Fpk or GF(pk) (GF = Galois Field), is the splitting field for xp
k − x ∈ Zp[x].

Proof: Let F be the splitting field for f(x) = xp
k −x ∈ Zp[x]. Notice that the (formal) derivative of this polynomial

is f ′(x) = pkxp
k − 1 = −1 since pk = 0 in Zp. Therefore, f(x) and f ′(x) are relatively prime. This implies that f(x)

has no repeated roots. Since F contains all of the roots of xp
k − x and the roots are distinct, we have |F| ≥ pk.

Now let q = pk (for convenience) and let K = {x ∈ F | xq − x} (our set of q roots of xq − x). We have
1 ∈ K since 1q − 1 = 1 − 1 = 0. Let a, b ∈ K. Then aq − a = 0 and bq − b = 0 so aq = a and bq = b. Next,
(a + b)q = aq + qaq−1b + · · · + qabq−1 + bq = aq + bq = a + b since the binomial coefficients (except the first and
last) are all divisible by p and thus are 0 in Zp. Therefore, (a + b)q − (a + b) = 0 so a + b is a root of xq − x
and thus a + b ∈ K. Next, (−a)q = (−1)qaq = (−1)qa = −a if q is odd. On the other hand, if q is even, we are
working in characteristic 2 and so a = −a. Either way, (−a)q − (−a) = 0 and thus −a is a root of xq − x so that
−a ∈ K. Also, (ab)q = aqbq = ab. Thus (ab)q − (ab) = 0 so ab is a root of xq − x. Thus ab ∈ K. Finally, if a 6= 0,
(a−1)q = a−q = (aq)−1 = a−1. Therefore, a−1 is a root of xq − x and so a−1 ∈ K. We have shown that the set of
roots K is in fact a subfield of F. Since the splitting field is the smallest field in which xq − x splits and such a field
must at least contain the roots, we have K must be the splitting field. Therefore, F = K and so F is a desired field
of order q = pk.

From this we learn that a field of order pk is nothing more than the splitting field of xp
k−x over Zp. By uniqueness

of splitting fields, this field is unique up to isomorphism. �

Using essentially the argument in the proof above, one has that ϕ : Fpk → Fpk defined by ϕ(x) = xp is an
automorphism of Fpk . This is called the Frobenius automorphism of Fpk . Everything is Fpk is fixed by ϕk. It turns
out that this automorphism generates the group of automorphisms of Fpk .

Suppose Fpm ⊆ Fpn . Then Fpn is a vector space over Fpm . Thus Fpn ∼= (Fpm)k (as vector spaces) where
dimFpm

(Fpn) = k. Comparing sizes, we have pn = (pm)k = pmk. Therefore, m must be a divisor of n. Conversely,
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if m divides n, one can show that xp
m − x divides xp

n − x (in Zp[x]). Thus the splitting field of xp
m − x can be

embedded in the splitting field of xp
n − x. In particular, we can identify Fpm with a subfield of Fpn . Assuming this

identification:

Theorem: Fpm is a subfield of Fpn if and only if m divides n.

Therefore, F4 is a subfield of F16 (since 4 = 22 and 16 = 24 and 2 divides 4) but F4 is not a subfield of F8 (since
4 = 22 and 8 = 23 and 2 does not divide 3).

It is possible to use these identifications to build a tower: Fp ⊆ Fp2! ⊆ Fp3! ⊆ · · · since n! divides (n+ 1)!. Then

one can define Fp∞ =

∞⋃
n=1

Fpn! . This turns out to be the algebraic closure every finite field of characteristic p.

Suppose f(x) ∈ Zp[x] is irreducible with root α. Then Zp[α] =
Zp[x]

��
(f(x))

is a field of degree [Zp[α] : Zp] =

deg(f(x)). This means |Zp[α]| = pdeg(f(x). So by the uniqueness of finite fields, we must have Zp[α] ∼= Fpdeg(f(x)) .

In particular, if we want to construct a field of order pk, we should find an irreducible polynomial f(x) ∈ Zp[x]
with deg(f(x)) = k. Then Fpk = Zp[x]/(f(x)). It can be shown that Zp[x] does in fact have irreducible polynomials
of all positive degrees, so this is always possible.

Example: Let’s construct the field of order 4. We need an irreducible quadratic in Z2[x] (since 22 = 4). Notice

that x2 + x+ 1 has no roots in Z2, so x2 + x+ 1 is irreducible in Z2[x]. Therefore, Z2[x]/(x2 + x+ 1) ∼= F22 .
Let’s make this more concrete. We have Z2[x]/(x2 + x+ 1) ∼= Z2[α] = {0, 1, α, α+ 1} where α2 + α+ 1 = 0 (we

only need up to linear stuff in α since α is a root of a polynomial of degree 2). Notice α2 = −α − 1 = α + 1 since
we’re working mod 2. We can thus fill out the following addition and multiplication tables:

+ 0 1 α α+ 1

0 0 1 α α+ 1
1 1 0 α+ 1 α
α α α+ 1 0 1

α+ 1 α+ 1 α 1 0

· 0 1 α α+ 1

0 0 0 0 0
1 0 1 α α+ 1
α 0 α α+ 1 1

α+ 1 0 α+ 1 1 α

For example, α2 = α + 1 (since α2 + α + 1 = 0). Likewise, (α + 1)2 = α2 + 2α + 1 = α2 + 1 = (α + 1) + 1 = α
and α(α+ 1) = α2 + α = 1 both using the relation α2 + α+ 1 = 0 to simplify.

Also, let f(x) be an irreducible (over Zp[x]) of degree k. Then its roots belong to the field Fpk . But this field

is precisely the roots of xp
k − x. It follows that that the factors of f(x) are factors of xp

k − x. Thus f(x) divides

xp
k − x. Thus. . .

Theorem: Working in Zp[x], monic irreducible polynomials of degree k are precisely the irreducible (degree k)

factors of xp
k − x. Moreover, xp

k − x has no repeated factors.

For example, working in Z2[x], we have that x2 − x = x2 + x = x(x + 1). Thus the linear irreducibles are x
and x + 1. Next, x4 − x = x4 + x = x(x + 1)(x2 + x + 1). Therefore, the irreducible quadratic (there is only one
in Z2[x]) is x2 + x + 1. We could have figured this out by listing all quadratics: x2, x2 + 1, x2 + x, x2 + x + 1 and
then plugging in x = 0 and x = 1 to see which ones have roots. If we wanted to find all irreducible (monic) cubics

in Z2[x], we could factor x2
3 − x. This polynomial would also contain all of the irreducibles of degree k for any k

dividing 3. Notice that x and x+ 1 are the only irreducible linears, so the other 23 − 1− 1 = 6 degrees of factors of
x2

3 − x must consist of the irreducible cubics. From this (and the fact that no factors are repeated in x2
3 − x) we

can conclude that Z2[x] must have exactly 2 irreducible cubics! This kind of reasoning can be generalized and thus
gives us an iterative technique for finding all irreducibles in Zp[x] of degree k.
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