- Due: Mon., Sept. 13th, 2021
- #1 An Inverse Problem Let G be a group and let $\varphi: G \to G$ be defined by $\varphi(x) = x^{-1}$ for all $x \in G$. Show that φ is a homomorphism if and only if G is Abelian.
 - When G is Abelian (so that φ is a homomorphism), is φ an isomorphism? Why or why not?

Note: Since its domain and codomain match, we could call φ an endomorphism if it's a homomorphism. And we could call it automorphism if it's an isomorphism.

- #2 Being Productive Let A and B be groups. Recall that $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$ becomes a group when we multiply coordinatewise: (a,b)(c,d) = (ac,bd).
 - (a) Prove that $A \times B \cong B \times A$.
 - (b) Let $\pi_A : A \times B \to A$ be defined by $\pi_A(a,b) = a$. Show that π_A is an epimorphism (an onto homomorphism). What is its kernel? What does the first isomorphism theorem say?
 - (c) Show that $A \times B$ is Abelian if and only if both A and B are Abelian. Is this still true if we swap out the word "Abelian" with the word "cyclic"?
- #3 Cayley Permutes Let G be a group. We write $S(G) = \{f : G \to G \mid f \text{ is a bijection }\}$ for the permutations on G. Let $L_g : G \to G$ be defined by $L_g(x) = gx$ (i.e., left multiplication by g) and $R_g : G \to G$ be defined by $R_g(x) = xg$ (i.e., right multiplication by g).
 - (a) Show that $L_a \circ R_c = R_c \circ L_a$ for all $a, c \in G$ (just plug in $b \in G$ and compute). In other words, left and right multiplication operators commute. In fact, "left and right multiplication operators commute" is equivalent to which axiom?
 - (b) Show that $L_g, R_g \in S(G)$ for every $g \in G$.
 - (c) [Grad. Problem] Prove that $\varphi: G \to S(G)$ defined by $\varphi(g) = L_g$ is a monomorphism (i.e., one-to-one homomorphism).
 - Note: You showed that $L_q \in S(G)$ in the last part, so S(G) makes sense as a codomain.
 - Observation: You just proved Cayley's Theorem: $G \cong \varphi(G)$ is a subgroup of S(G) (i.e., every group is isomorphic to a subgroup of permutations).
 - (d) Consider $D_4 = \langle x, y \mid x^4 = 1, y^2 = 1, (xy)^2 = 1 \rangle = \{1, x, x^2, x^3, y, xy, x^2y, x^3y\}$. Relabel elements as integers: $1 \mapsto 1, x \mapsto 2, x^2 \mapsto 3, \dots, x^3y \mapsto 8$. Under this relabeling L_x becomes the permutation (1234)(5678).
 - As determined by Cayley's theorem, find a subgroup of S_8 that is isomorphic to D_4 .
 - (e) [Grad. Problem] Define $\varphi_g(x) = L_g \circ R_{g^{-1}}(x) = gxg^{-1}$ (i.e., φ_g is conjugation by g). Show φ_g is an automorphism of G.
 - Note: $\text{Inn}(G) = \{ \varphi_g \mid g \in G \}$ is the set of inner automorphisms and Aut(G) is the set of automorphisms. It is not hard to show that Inn(G) is a subgroup of Aut(G) which in turn is a subgroup of S(G).
 - (f) [Grad. Problem] Let $\varphi: G \to \text{Inn}(G)$ be defined by $\varphi(g) = \varphi_g$ (i.e., g maps to the conjugation by g map). Show that the kernel of φ is the center of G. (What does the isomorphism theorem say?) Also, show that Inn(G) is a normal subgroup of Aut(G).

Note: Automorphisms which aren't inner are called "outer automorphisms". In fact, Aut(G)/Inn(G) is called the outer automorphism group of G.

- #4 Permutin' Some More Find a permutation which conjugates $\sigma = (16)(253)(4879)$ to $\tau = (149)(23)(5867)$.
- #5 Quotients Write down all of the subgroups and quotients of \mathbb{Z}_{12} .
- #6 Quotients Again Recall the subgroup lattice of D_4 (as given in class).
 - (a) List the normal subgroups of D_4 . For the non-normal subgroups, show why they fail to be normal by giving left coset which does not match its right coset.
 - (b) Write down all of the quotients of D_4 .