- #1 A Classy Problem Write down the class equation for $D_4 = \langle x, y \mid x^4 = 1, y^2 = 1, (xy)^2 = 1 \rangle$.
- #2 Normalizing Group Theory We know that G acts on itself via conjugation: $g \bullet x = gxg^{-1}$. This induces an action of G on its powerset $\mathcal{P}(G) = \{A \mid A \subseteq G\}$ where $g \bullet A = gAg^{-1} = \{gag^{-1} \mid a \in A\}$.
 - (a) Show that the action of G on its powerset is indeed an action (check our two axioms). Note: Here the stabilizers have a special name: $N_G(A) = \{g \in G \mid gAg^{-1} = A\}$ is the normalizer of $A \subseteq G$ in G.
 - (b) Let $S = \{H \mid H \text{ is a subgroup of } G\}$. Show that G acts on S (via conjugation). Hint: You already know that the group action axioms hold (on all subsets). You essentially just need to verify a kind of closure: show H a subgroup implies gHg^{-1} is a subgroup. Note: If two subgroup lie in the same orbit, we call them conjugate subgroups. That is H and K are conjugate subgroups iff there is some $g \in G$ such that $K = gHg^{-1}$.
 - (c) In the previous part you showed that G acts on its subgroups via conjugation. What does it mean if the orbit of a subgroup H is $\{H\}$ (a singleton orbit)?
 - (d) Let H be a subgroup of G. Suppose that K is also a subgroup and that $H \triangleleft K$ (i.e., H is normal in K). Show that $K \subseteq N_G(H)$.

Note: This says that the largest subgroup in which H remains a normal subgroup is the normalizer of H.

- (e) Find the normalizers of all of the subgroups of S_3 . Hint: We always have $H \subseteq N_G(H)$.
- (f) Find the normalizers of all of the subgroups of D_4 .
- (g) [Grad. Problem] Find $N_{D_8}(\langle x^4, y \rangle)$.
- #3 **Permutatin' Sets** Let $X = \{1, 2, ..., n\}$ and $1 \le k \le n$. Let $A \subseteq X$ and $\sigma \in S_n$. Define $\sigma \bullet A = \{\sigma(a) \mid a \in A\}$. For example, $\sigma \bullet \{x, y, z\} = \{\sigma(x), \sigma(y), \sigma(z)\}$.
 - (a) [Grad. Problem] Let $\mathcal{K} = \{A \subseteq X \mid A \text{ has cardinality } k\}$. Show that S_n acts on \mathcal{K} via the operation defined above.

Note: Don't forget to check "closure" as well as the other axioms.

- (b) Consider $X = \{1, 2, 3, 4\}$. Describe the action of $\sigma = (12)$ and $\tau = (123)$ on the 2-element subsets of X (there are 6 such subsets).
- (c) Find the orbit of $A = \{1, 3\}$ under the action of S_4 on the 2-element subsets of X. Also, find the stabilizer of A.

Note: The orbit will be a set of sets.

To help determine normalizers and for future reference, I have included several subgroup lattices. First, we have the subgroup lattices for $D_4 = \langle x, y \mid x^4 = 1, y^2 = 1, (xy)^2 = 1 \rangle = \{1, x, x^2, x^3, y, xy, x^2y, x^3y\}$ and S_3 :

Next, we have the subgroup lattice for $D_8=\langle x,y\mid x^8=1,y^2=1,(xy)^2=1\rangle=\{1,x,\dots,x^7,y,xy,\dots,x^7y\}$:

