#1 Gaussian Integers Recall that the Gaussian integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ are a Euclidean domain when equipped with the norm:

$$N(a + bi) = (a + bi)\overline{(a + bi)} = (a + bi)(a - bi) = a^2 + b^2$$

In every Euclidean domain we have $N(z) \leq N(zw)$, but here we have something even stronger: the norm is multiplicative (i.e. N(zw) = N(z)N(w)). Note also that for $z = a + bi \in \mathbb{Z}[i]$, we have $\bar{z} = z$ (i.e. a - bi = a + bi) iff z is an integer (i.e. z = a). Also, it may help to note that z divides w iff \bar{z} divides \bar{w} (since $zk = w \iff \bar{z}k = \bar{w}$).

Consider $n \in \mathbb{Z}$. Notice that if n factors in \mathbb{Z} , then n factors in $\mathbb{Z}[i]$. However, the converse does not necessarily hold (for example, 5 = (1+2i)(1-2i)). For clarity, in what follows, when we say *prime integer* or just *prime* we mean prime in \mathbb{Z} and when we say *Gauss prime* we mean prime in $\mathbb{Z}[i]$.

- (a) Identify $\mathbb{Z}[i]^{\times}$ (the units of the Gaussian integers).
- (b) Show that π is a Gauss prime iff $\bar{\pi}$ is a Gauss prime.
- (c) Show if $N(\pi)$ is a prime integer, then π must be a Gauss prime. Note: Prime = irreducible since $\mathbb{Z}[i]$ is a UFD.
- (d) Let p be a prime (integer). Show that either p is a Gauss prime or $p = \pi \bar{\pi}$ for some Gauss prime π . Hint: If $p = \pi \tau$, then $N(\pi)N(\tau) = N(p) = p^2$. So $N(\pi) = \mathbb{P}$ If N(z) is a prime integer, can z factor?

Lemma: If π is a Gauss prime, then $N(\pi) = \pi \bar{\pi}$ is either a prime integer or the square of a prime integer.

proof: Let π be a Gauss prime and suppose that π is not a prime integer (or an associate of a prime integer). [Note: π isn't a unit so $N(\pi) > 1$.] We already showed that $\bar{\pi}$ is also a Gauss prime. Also, by considering the units of $\mathbb{Z}[i]$, we can see that π and $\bar{\pi}$ cannot be associates (if they were, they would necessarily be associates of an integer).

Now consider the integer $N(\pi)$. Suppose that $N(\pi) = AB$ for some $A, B \in \mathbb{Z}_{>0}$. Notice π divides $N(\pi) = \pi \bar{\pi} = AB$ so because π is prime it must divide A or B. WLOG assume it divides A. Next, since π divides A, $\bar{\pi}$ divides \bar{A} (= A since integers are self-conjugate). But π and $\bar{\pi}$ are non-associate primes, thus relatively prime. Hence their product $AB = N(\pi) = \pi \bar{\pi}$ must divide A. Therefore, B = 1. This means $N(\pi)$ has no interesting factorizations (it's a prime integer).

Of course, if π is a Gauss prime which is an associate of a prime integer, then $\pi = up$ for some unit u and prime p. Then $N(\pi) = N(u)N(p) = 1 \cdot p^2 = p^2$.

(e) Let p be an integer. Show that $p = \pi \bar{\pi}$ for some $\pi \in \mathbb{Z}[i]$ iff $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.

Lemma: Let p be an odd prime integer. Then p is a Gauss prime iff $x^2 + 1$ is irreducible in $\mathbb{Z}_p[x]$.

proof: Primes in PIDs generate maximal ideals. So p is a Gauss prime iff $\mathbb{Z}[i]/(p)$ is a field. Note that $\mathbb{Z}[i]/(p) \cong \mathbb{Z}[x]/(p,x^2+1) \cong \mathbb{Z}[x]/(p^2+1)$. So $\mathbb{Z}[i]/(p)$ is a field iff $\mathbb{Z}_p[x]/(x^2+1)$ is a field. This is true iff (x^2+1) is maximal in $\mathbb{Z}_p[x]$. Thus iff x^2+1 is irreducible in $\mathbb{Z}_p[x]$.

(f) Let p be a prime integer. Show that $p = \pi \bar{\pi}$ from some $\pi \in \mathbb{Z}[i]$ iff $x^2 = -1 \pmod{p}$ has an integer solution. Hint: If $p = \pi \bar{\pi}$, then p is not a Gauss prime. Apply the lemma. Also, you need to handle the case p = 2 separately – the integer 2 isn't odd!

Lemma: Let p be an odd prime (integer). Show that $a \in \mathbb{Z}$ is a solution of $x^2 = -1 \pmod{p}$ iff a is an element of order 4 in $U(p) = \mathbb{Z}_p^{\times}$ (the group of units in \mathbb{Z}_p).

proof: If a is a solution then $a^2 = -1 \pmod{p}$ so the order of a isn't 1 or 2. But $a^4 = (-1)^2 = 1 \pmod{p}$ so the order of a is 4. Conversely, if a has order 4, then $a^4 = 1 \pmod{p}$. This means a is a root of the polynomial $x^4 - 1 = (x^2 - 1)(x^2 + 1)$ in $\mathbb{Z}_p[x]$. But also, a has order 4 so $a^2 \neq 1 \pmod{p}$. This means that a cannot be a root of $x^2 - 1$. Thus it is a root of $x^2 + 1$ so that $a^2 + 1 = 0 \pmod{p}$ (i.e. $a^2 = -1 \pmod{p}$).

Proposition: Let p be a prime integer. $x^2 = -1 \pmod{p}$ has an integer solution iff $p \neq 3 \pmod{4}$.

proof: First, any prime integer congruent to 0 or 2 (mod 4) must be even. The only such prime is p = 2. Notice that $1^2 = 1 = -1 \pmod{2}$. Thus we can turn our attention to odd primes. Assume p is odd.

Suppose that $x^2 = -1 \pmod{p}$ has an integer solution, say a. Then by the previous lemma |a| = 4 in the group \mathbb{Z}_p^{\times} . Notice that $|\mathbb{Z}_p^{\times}| = p - 1$. So 4 divides p - 1. Therefore, $p = 1 \pmod{4}$. [Thus $p \neq 3 \pmod{4}$ for any such prime.]

Conversely, if $p \neq 3 \pmod 4$, then since p is odd we have that $p = 1 \pmod 4$. Therefore, 4 divides p - 1. The group \mathbb{Z}_p^{\times} is cyclic (we will eventually prove that any finite subgroup of the group of units of a field is cyclic). Therefore, this group must have an element of order 4, say a. Therefore, by the lemma above a is an integer solution of $x^2 = -1 \pmod p$.

In summary, we've proven the following theorem...

Theorem: Let p be a prime integer. The following are equivalent:

- $p = \pi \bar{\pi}$ for some Gauss prime π .
- $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.
- $x^2 = -1 \pmod{p}$ has an integer solution.
- $p \neq 3 \pmod{4}$.

This theorem allows us to identify the primes in $\mathbb{Z}[i]$. Factorizations can now be accomplished by focusing on factoring (as an integer) the norm of an element and then seeing what that says about the element in $\mathbb{Z}[i]$.

Example: 6 + 2i = 2(3 + i). Notice that $N(3 + i) = 3^2 + 1^2 = 10$ so 3 + i isn't a Gauss prime. $10 = 2 \cdot 5$. 2 = (1 + i)(1 - i) and 5 = (1 + 2i)(1 - 2i). Thus $(1 + i)(1 - i)(1 + 2i)(1 - 2i) = 2 \cdot 5 = 10 = (3 + i)(3 - i)$ so because $\mathbb{Z}[i]$ is a UFD, the prime factors of 3 + i must be found among $1 \pm i$ and $1 \pm 2i$. Through trial and error we find that 3 + i = (1 - i)(1 + 2i). Thus $6 + 2i = 2(3 + i) = (1 + i)(1 - i)(1 - i)(1 + 2i) = (1 + i)(1 - i)^2(1 + 2i)$.

Example: 6 + 9i = 3(2 + 3i). Notice that $3 = 3 \pmod{4}$ so 3 is not only a prime but also a Gauss prime. Next, $N(2 + 3i) = 2^2 + 3^2 = 13$ (prime) so 2 + 3i is also a Gauss prime. Therefore, 6 + 9i = 3(2 + 3i) is a prime factorization.

- (g) Factor 700 in \mathbb{Z} and then in $\mathbb{Z}[i]$.
- (h) Factor 33 + 77i in $\mathbb{Z}[i]$.
- #2 An Ideal Problem Let R be a ring and let I and J be ideals of R. Show that $I + J = \{i + j \mid i \in I \text{ and } j \in J\}$, $I \cap J$, and $IJ = \{i_1j_1 + \cdots + i_mj_m \mid m \geq 0; i_k \in I \text{ and } j_k \in J\}$ are ideals of R.
- #3 Idealistic Divisibility Let R be an integral domain. Recall that a divides b iff b is a multiple of a iff there is some $k \in R$ such that ak = b iff $b \in (a)$ iff $(b) \subseteq (a)$.
 - (a) Let $a, b \in R$. We say $d \in R$ is a greatest common divisor (GCD) of a and b iff d is a common divisor of a and b (i.e., d divides a and d divides b) and also given any other common divisor c (i.e., d divides d and d divides d.
 - Suppose that $(a) + (b) = (a, b) = \{ax + by \mid x, y \in R\}$ is principal, say (a, b) = (d). Show that d is a GCD of a and b.
 - (b) [Grad. Students] Give a similar definition for a least common multiple (LCM) of a and b. Show that if $(a) \cap (b) = (\ell)$, then ℓ is an LCM of a and b.
- #4 Fractionally Important [Grad. Students] Let R be a principal ideal domain (PID) and let S be a non-empty multiplicative subset of R (i.e., $a, b \in S$ implies $ab \in S$) and also assume that $0 \notin S$. Show that RS^{-1} is also a PID. [Recall that $RS^{-1} = \{r/s \mid r \in R \text{ and } s \in S\}$ is the ring of fractions with numerators in R and denominators in S.]

Hint: Let \mathcal{I} be an ideal of RS^{-1} . Consider $I = \{a \in R \mid \text{there exists some } s \in S \text{ such that } a/s \in \mathcal{I}\}$ (i.e. the set of numerators). Show I is an ideal of R and $IS^{-1} = \{a/s \mid a \in I \text{ and } s \in S\} = \mathcal{I}$.