
Math 4720/5210 Homework #6 Due: Wed., Oct. 20th, 2021

#1 Gaussian Integers Recall that the Gaussian integers Z[i] = {a+ bi | a, b ∈ Z} are a Euclidean domain when equipped
with the norm:

N(a+ bi) = (a+ bi)(a+ bi) = (a+ bi)(a− bi) = a2 + b2

In every Euclidean domain we haveN(z) ≤ N(zw), but here we have something even stronger: the norm is multiplicative
(i.e. N(zw) = N(z)N(w)). Note also that for z = a+ bi ∈ Z[i], we have z̄ = z (i.e. a− bi = a+ bi) iff z is an integer
(i.e. z = a). Also, it may help to note that z divides w iff z̄ divides w̄ (since zk = w ⇐⇒ z̄k̄ = w̄).

Consider n ∈ Z. Notice that if n factors in Z, then n factors in Z[i]. However, the converse does not necessarily hold
(for example, 5 = (1+2i)(1−2i)). For clarity, in what follows, when we say prime integer or just prime we mean prime
in Z and when we say Gauss prime we mean prime in Z[i].

(a) Identify Z[i]× (the units of the Gaussian integers).

(b) Show that π is a Gauss prime iff π̄ is a Gauss prime.

(c) Show if N(π) is a prime integer, then π must be a Gauss prime. Note: Prime = irreducible since Z[i] is a UFD.

(d) Let p be a prime (integer). Show that either p is a Gauss prime or p = ππ̄ for some Gauss prime π.

Hint: If p = πτ , then N(π)N(τ) = N(p) = p2. So N(π) =? If N(z) is a prime integer, can z factor?

Lemma: If π is a Gauss prime, then N(π) = ππ̄ is either a prime integer or the square of a prime integer.

proof: Let π be a Gauss prime and suppose that π is not a prime integer (or an associate of a prime integer).
[Note: π isn’t a unit so N(π) > 1.] We already showed that π̄ is also a Gauss prime. Also, by considering the
units of Z[i], we can see that π and π̄ cannot be associates (if they were, they would necessarily be associates of
an integer).

Now consider the integer N(π). Suppose that N(π) = AB for some A,B ∈ Z>0. Notice π divides N(π) = ππ̄ = AB
so because π is prime it must divide A or B. WLOG assume it divides A. Next, since π divides A, π̄ divides Ā
(= A since integers are self-conjugate). But π and π̄ are non-associate primes, thus relatively prime. Hence their
product AB = N(π) = ππ̄ must divide A. Therefore, B = 1. This means N(π) has no interesting factorizations
(it’s a prime integer).

Of course, if π is a Gauss prime which is an associate of a prime integer, then π = up for some unit u and prime
p. Then N(π) = N(u)N(p) = 1 · p2 = p2.

(e) Let p be an integer. Show that p = ππ̄ for some π ∈ Z[i] iff p = a2 + b2 for some a, b ∈ Z.

Lemma: Let p be an odd prime integer. Then p is a Gauss prime iff x2 + 1 is irreducible in Zp[x].

proof: Primes in PIDs generate maximal ideals. So p is a Gauss prime iff Z[i]/(p) is a field. Note that
Z[i]
��

(p)
∼=

Z[x]
��

(p, x2 + 1)
∼=

Zp[x]
��

(x2 + 1)
. So Z[i]/(p) is a field iff Zp[x]/(x2 + 1) is a field. This is true iff (x2 + 1) is

maximal in Zp[x]. Thus iff x2 + 1 is irreducible in Zp[x].

(f) Let p be a prime integer. Show that p = ππ̄ from some π ∈ Z[i] iff x2 = −1 (mod p) has an integer solution.

Hint: If p = ππ̄, then p is not a Gauss prime. Apply the lemma. Also, you need to handle the case p = 2 separately
– the integer 2 isn’t odd!

Lemma: Let p be an odd prime (integer). Show that a ∈ Z is a solution of x2 = −1 (mod p) iff a is an element
of order 4 in U(p) = Z×

p (the group of units in Zp).

proof: If a is a solution then a2 = −1 (mod p) so the order of a isn’t 1 or 2. But a4 = (−1)2 = 1 (mod p) so
the order of a is 4. Conversely, if a has order 4, then a4 = 1 (mod p). This means a is a root of the polynomial
x4− 1 = (x2− 1)(x2 + 1) in Zp[x]. But also, a has order 4 so a2 6= 1 (mod p). This means that a cannot be a root
of x2 − 1. Thus it is a root of x2 + 1 so that a2 + 1 = 0 (mod p) (i.e. a2 = −1 (mod p)).
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Proposition: Let p be a prime integer. x2 = −1 (mod p) has an integer solution iff p 6= 3 (mod 4).

proof: First, any prime integer congruent to 0 or 2 (mod 4) must be even. The only such prime is p = 2. Notice
that 12 = 1 = −1 (mod 2). Thus we can turn our attention to odd primes. Assume p is odd.

Suppose that x2 = −1 (mod p) has an integer solution, say a. Then by the previous lemma |a| = 4 in the group
Z×
p . Notice that |Z×

p | = p − 1. So 4 divides p − 1. Therefore, p = 1 (mod 4). [Thus p 6= 3 (mod 4) for any such
prime.]

Conversely, if p 6= 3 (mod 4), then since p is odd we have that p = 1 (mod 4). Therefore, 4 divides p − 1. The
group Z×

p is cyclic (we will eventually prove that any finite subgroup of the group of units of a field is cyclic).
Therefore, this group must have an element of order 4, say a. Therefore, by the lemma above a is an integer
solution of x2 = −1 (mod p).

In summary, we’ve proven the following theorem. . .

Theorem: Let p be a prime integer. The following are equivalent:

• p = ππ̄ for some Gauss prime π.

• p = a2 + b2 for some a, b ∈ Z.

• x2 = −1 (mod p) has an integer solution.

• p 6= 3 (mod 4).

This theorem allows us to identify the primes in Z[i]. Factorizations can now be accomplished by focusing on
factoring (as an integer) the norm of an element and then seeing what that says about the element in Z[i].

Example: 6 + 2i = 2(3 + i). Notice that N(3 + i) = 32 + 12 = 10 so 3 + i isn’t a Gauss prime. 10 = 2 · 5.
2 = (1 + i)(1− i) and 5 = (1 + 2i)(1−2i). Thus (1 + i)(1− i)(1 + 2i)(1−2i) = 2 ·5 = 10 = (3 + i)(3− i) so because
Z[i] is a UFD, the prime factors of 3 + i must be found among 1± i and 1± 2i. Through trial and error we find
that 3 + i = (1− i)(1 + 2i). Thus 6 + 2i = 2(3 + i) = (1 + i)(1− i)(1− i)(1 + 2i) = (1 + i)(1− i)2(1 + 2i).

Example: 6 + 9i = 3(2 + 3i). Notice that 3 = 3 (mod 4) so 3 is not only a prime but also a Gauss prime.
Next, N(2 + 3i) = 22 + 32 = 13 (prime) so 2 + 3i is also a Gauss prime. Therefore, 6 + 9i = 3(2 + 3i) is a prime
factorization.

(g) Factor 700 in Z and then in Z[i].

(h) Factor 33 + 77i in Z[i].

#2 An Ideal Problem Let R be a ring and let I and J be ideals of R.Show that I + J = {i+ j | i ∈ I and j ∈ J}, I ∩ J ,
and IJ = {i1j1 + · · ·+ imjm | m ≥ 0; ik ∈ I and jk ∈ J} are ideals of R.

#3 Idealistic Divisibility Let R be an integral domain. Recall that a divides b iff b is a multiple of a iff there is some
k ∈ R such that ak = b iff b ∈ (a) iff (b) ⊆ (a).

(a) Let a, b ∈ R. We say d ∈ R is a greatest common divisor (GCD) of a and b iff d is a common divisor of a and b
(i.e., d divides a and d divides b) and also given any other common divisor c (i.e., c divides a and c divides b) we
have that c divides d.

Suppose that (a) + (b) = (a, b) = {ax+ by | x, y ∈ R} is principal, say (a, b) = (d). Show that d is a GCD of a and
b.

(b) [Grad. Students] Give a similar definition for a least common multiple (LCM) of a and b. Show that if
(a) ∩ (b) = (`), then ` is an LCM of a and b.

#4 Fractionally Important [Grad. Students] Let R be a principal ideal domain (PID) and let S be a non-empty
multiplicative subset of R (i.e., a, b ∈ S implies ab ∈ S) and also assume that 0 6∈ S. Show that RS−1 is also a PID.
[Recall that RS−1 = {r/s | r ∈ R and s ∈ S} is the ring of fractions with numerators in R and denominators in S.]

Hint: Let I be an ideal of RS−1. Consider I = {a ∈ R | there exists some s ∈ S such that a/s ∈ I} (i.e. the set of
numerators). Show I is an ideal of R and IS−1 = {a/s | a ∈ I and s ∈ S} = I.
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