Homework #7

Due: Wed., Oct. 27th, 2021

- #1 Easy Euclid Let E be a Euclidean domain equipped with norm $\delta: E \{0\} \to \mathbb{Z}_{\geq 0}$. Suppose $a, b \in E$ are non-zero are non-zero associates. Show that $\delta(a) = \delta(b)$. Is the converse true?
- #2 Euclid's Revenge! A quotient of $\mathbb{Q}[x]$.
 - (a) Find the GCD of $x^3 2x^2 + 1$ and $x^2 x + 3$ in $\mathbb{Q}[x]$ and express it as a linear combination (i.e. run the Extended Euclidean Algorithm).
 - (b) Let $I = (x^2 x + 3)$. Is $x^3 2x^2 + 1 + I$ zero, a zero divisor, or a unit in $\mathbb{Q}[x]$? Prove your result (If zero, why? If a zero divisor, what is a non-zero element that multiplied by gives zero? If a unit, what's its inverse?).
 - (c) Let $I = (x^3 8)$. Is $x^2 4 + I$ zero, a zero divisor, or a unit in Q[x]? Prove your result (If zero, why? If a zero divisor, what is a non-zero element that multiplied by gives zero? If a unit, what's its inverse?).
- #3 A Rational Problem As in the Factorization Handout, compute the inverse of $x^2+x+2+I$ in $\mathbb{Q}[x]$ where $I=(x^3-3)$. Then use this result to rationalize the fraction $\frac{1}{2+3^{1/3}+3^{2/3}}$ (i.e. write this fraction as $a+b\cdot 3^{1/3}+c\cdot 3^{2/3}$ for some $a,b,c\in\mathbb{Q}$).
- #4 Prime, maximal, both, or neither? Identify the following ideals as prime, maximal, both, or neither.
 - (a) $(x^2 5)$ in $\mathbb{Q}[x]$
 - (b) $(x^2 5)$ in $\mathbb{R}[x]$
 - (c) $(x^2 + 1)$ in $\mathbb{Q}[x]$
 - (d) (x^2+1) in $\mathbb{Z}[x]$