Homework #9

Due: Mon., Nov. 22nd, 2021

- #1 All Torsion-ed up Inside Let R be a ring with 1 and M an R-module. We call $m \in M$ a torsion element if $r \cdot m = 0$ for some $0 \neq r \in R$ (i.e., m is annihilated by some nonzero element of our ring).
 - Define: $\operatorname{Tor}_R(M) = \{ m \in M \mid \exists \ 0 \neq r \in R \text{ such that } r \cdot m = 0 \}.$

We showed that $\operatorname{Tor}_R(M)$ is a submodule of M if R is an integral domain. If R is not an integral domain, we can still define this set but it may not be a submodule.

- (a) Show that if R has zero divisors and $M \neq \{0\}$, then $Tor(M) \neq \{0\}$.
- (b) Let $\varphi: M \to N$ be a R-module homomorphism. Show that $\varphi(\operatorname{Tor}_R(M)) \subseteq \operatorname{Tor}_R(N)$.
- (c) [Grad. Students] Give an example of a ring R and R-module M where Tor(M) is not a submodule of M. Hint: This can be done with some \mathbb{Z}_n as a \mathbb{Z}_n -module.
- #2 Am I Extendable? Let G be a finite abelian group. Then G is a \mathbb{Z} -module. Can the action of \mathbb{Z} be extended to an action of \mathbb{Q} making G into a \mathbb{Q} -module? Why or why not?
- #3 Homies [Grad. Students] Let R be a commutative ring with 1 and let M be an R-module.

Show that $\operatorname{Hom}_R(R, M) \cong M$ as R-modules.

Hint: A homomorphism from a free module to some other module is determined by its action on a basis.

- #4 Irreducible Fun! Let R be a ring with 1 and M an R-module and N a submodule of M. Then N is called a *cyclic* R-module if there exists some $n \in N$ such that $N = \langle n \rangle = \operatorname{span}_R\{n\} = R \cdot n = \{r \cdot n \mid R\}$. An R-module M is called *irreducible* if $M \neq \{0\}$ and the only submodules of M are $\{0\}$ and M itself.
 - (a) Let $x \in M$. Show that $\langle x \rangle$ is a submodule of M.
 - (b) Show that M is irreducible if and only if $M \neq \{0\}$ and $M = \langle x \rangle$ for all $0 \neq x \in M$ (i.e., any non-zero element can serve as a generator).
 - (c) [Grad. Students] Let R be commutative with 1. Show that M is irreducible if and only if $R/I \cong M$ (as R-modules) for some maximal ideal $I \triangleleft R$.

Suggestion: First, consider why there must be some homomorphism $0 \neq \varphi : R \to M$ and how this gives $R/I \cong M$ for some ideal. Then consider why this only happens when I is maximal.

- (d) Determine all of the irreducible \mathbb{Z} -modules.
 - Hint: Consider part (b)'s result.
- (e) Let M_1 and M_2 be irreducible R-modules and $\varphi: M_1 \to M_2$ a R-module homomorphism. Show that either $\varphi = 0$ or φ is an isomorphism.

Note: This result is called Schur's Lemma. As a consequence, if $M=M_1=M_2$ is irreducible, we have that every $\varphi\in \operatorname{End}_R(M)=\operatorname{Hom}_R(M,M)$ is either the zero map or an isomorphism. Now, $\operatorname{End}_R(M)$ is a ring under addition of homomorphisms and function composition, it is not the zero ring since the identity map (a homomorphism) is not the zero map (since $M\neq\{0\}$ which is part of the definition of irreducibility), and we have that every non-zero homomorphism is invertible (i.e., a unit in $\operatorname{End}(M)$). Thus $\operatorname{End}_R(M)$ is a division ring when M is an irreducible R-module.