
Math 4720 & 5210 Uniquely Simple Abstract Algebra

Theorem: Let G be a simple group with |G| > 2 and assume G acts on a finite set X.
Then G acts as even permutations on X.

Proof: Let G acts on X. We then have the corresponding permutation representation ϕ : G → S(X) where
ϕ(g)[x] = g •x. Since G is simple Ker(ϕ) must be {1} or G. If Ker(ϕ) = G, then G acts trivially: each element
acts as the identity permutation (1) (which is even). On the other hand, suppose Ker(ϕ) = {1}. Then by the first
isomorphism theorem, G ∼= ϕ(G) a subgroup of S(X). Recall that subgroups of S(X) are either even or half-even and
half-odd. Thus either ϕ(G) is even (done) or ϕ(G) is half-even and half-odd. We show the latter case is impossible.
If ϕ(G) is half-even, then ϕ(G) intersected with the subgroup of even permutations in S(X) yields a subgroup of
ϕ(G) of index 2. By the index 2 theorem, this is a normal subgroup of ϕ(G). But |G| > 2 so this is a non-trivial
(proper) normal subgroup contradicting the assumption that G is simple. �

Corollary: Let G be a non-Abelian simple group. Suppose G has a subgroup of (finite) index k > 1. Alternatively,

suppose G acts non-trivially on a set of size k. Then G is isomorphic to a subgroup of Ak where k ≥ 5.

Proof: Non-Abelian implies |G| > 2. Let H be a subgroup of G of index [G : H] = k. Then G acts non-trivially
(by left multiplication) on the (left) cosets of H in G: g •xH = (gx)H. Thus G acts non-trivially on a set of size
[G : H] = k and so G is isomorphic to a subgroup of Ak. Finally, the alternating groups Ak for k < 5 do not contain
non-Abelian simple groups (A2 is trivial, A3 is cyclic order 3, and A4 is not simple and its proper subgroups are
Abelian). Therefore, k ≥ 5. �

It turns out that there are many interesting infinite simple groups (which are necessarily non-Abelian). The
above corollary implies that infinite simple groups cannot have subgroups of finite index.

Example: There are no simple groups of order 80 = 24 · 5. Suppose G is such a group. By the third Sylow

theorem, the number of Sylow 2-subgroups, n2, must divide 5. Since G is simple, n2 6= 1 (otherwise, the unique
Sylow 2-subgroup would be a proper non-trivial normal subgroup). Therefore, n2 = 5. Now G acts on the set
of Sylow 2-subgroups via conjugation. By the second Sylow theorem, this action has a single orbit. Thus it is a
non-trivial action on set of size 5. Therefore, G must be isomorphic to a subgroup of A5. But this is impossible since
|G| = 80 > |A5| = 60.

Theorem: There is a unique (up to isomorphism) simple group of order 60, namely A5.

Proof: Let G be simple and |G| = 60 = 22 · 3 · 5. Let S denote the set of Sylow 2-subgroups of G and let n2 = |S|.
The third Sylow theorem says that n2 ≡ 1 (mod 2) and n2 divides 15. Therefore, n2 is either 1, 3, 5, or 15. Since G
is simple, n2 6= 1 (otherwise the unique Sylow 2-subgroup would be normal contradicting the simplicity of G).

Recall that G acts on S via conjugation (the conjugate of a Sylow 2-subgroup is a Sylow 2-subgroup). Also, the
second Sylow theorem says that this action is transitive (i.e., all of S is a single orbit). Thus since |S| = n2 > 1, this
is a non-trivial action. So G is a simple group which acts non-trivially on a set of size n2.

If n2 = 3, the theorems above would imply that G is isomorphic to a subgroup of A3. But this is impossible since
G is too big: |G| = 60 > 3 = |A3|. If n2 = 5, the same theorems would imply that G is isomorphic to a subgroup of
A5, say G ∼= G ⊆ A5. But |G| = |G| = 60 and |A5| = 60 so G ∼= G = A5 (and we would be done).

We now turn to the only remaining case: n2 = 15. Let P ∈ S. Then [G : NG(P )] = n2 = 15 where NG(P ) =
{g ∈ G | gxg−1 ∈ P for all x ∈ P} is the normalizer of P in G. Thus |NG(P )| = 60/15 = 4 and since P ⊆ NG(P )
where |P | = 4 (since P is a Sylow 2-subgroup) we must have P = NG(P ) (i.e., P is “self-normalizing”).

Let x ∈ G be an element of order 2 (these exist by Cauchy’s theorem). Notice that xPx−1 = P if and only
if x ∈ NG(P ) = P . By the second Sylow theorem, 〈x〉 (a subgroup of order 2) must be contained in some Sylow
2-subgroup, say P . Consider x acting on S via conjugation: x fixes P . Since x’s order is 2, it can either fix or
exchange pairs of elements in S. If x did not fix any element of S other than P , it would act as a permutation
consisting of a 1-cycle and 7 (disjoint) transpositions (since |S| = 15). This would mean that x acted as an odd
permutation. But by our theorem this is impossible since G is simple. Therefore, x must fix at least one other Sylow
2-subgroup, say Q and so x ∈ NG(Q) = Q. Therefore, x ∈ P ∩Q. Since P and Q are distinct, order 4, and share 1
and x, we have |P ∩Q| = 2 (i.e., P ∩Q = 〈x〉 = {1, x}).

Now consider N = NG(P ∩ Q). Now P and Q are of order 4, thus they are Abelian. Therefore, P ∩ Q is not
just a subgroup but a normal subgroup of both P and Q. Therefore, we have both P and Q are contained in N (the
normalizer of P ∩Q). Therefore, |N | ≥ |P ∪Q| ≥ 6 and since P is a subgroup of N and N is a subgroup of G, |N |
must be a multiple of 4 and a divisor of 60. Thus |N | = 12, 20, or 60. We cannot have |N | = 60 since otherwise,
NG(P ∩Q) = N = G which means P ∩Q is a non-trivial (since |P ∩Q| = 2) proper normal subgroup (contradicting
the simplicity of G). If |N | = 20, then [G : N ] = 60/20 = 3 and so G would necessarily be isomorphic to a subgroup
of A3 (this is impossible since G is too big). Therefore, |N | = 12. Thus [G : N ] = 60/12 = 5. Therefore, G is
isomorphic to a subgroup of A5. Again, since G has order 60 = |A5|, this subgroup must be all of A5.

Therefore, in all cases, we must conclude that G ∼= A5. �


