
An is a simple group (for n ≥ 5)

Definition: G is simple if |G| > 1 and G has no non-trivial proper normal subgroups.

Theorem: If G is an abelian simple group, then G ∼= Zp for some prime p.

proof: Let G be an abelian simple group.
Remember that every subgroup of an abelian group is automatically normal (left cosets = right

cosets because everything commutes).
Let x ∈ G with x 6= 1 (1 is the identity of G). Then 〈x〉 is a non-trivial normal subgroup of G.

So since G is simple, we must have that G = 〈x〉 (If G is abelian and simple, G must be cyclic).
First, suppose G is infinite. The only infinite cyclic group (up to isomorphism) is Z. But this is

not a cyclic group since 2Z is a non-trivial proper (normal) subgroup. Therefore, G must be finite.
Suppose |G| = n. If n is composite, say with proper divisors k 6= 1 and ` 6= 1 such that n = k`,

then xn/k is an element of order `. So 〈xn/k〉 is a non-trivial proper (normal) subgroup of G (of
order `). Thus n must be prime (n can’t be 1 since simple groups are non-trivial).

Now suppose |G| = p (p prime). Let N be a non-trivial (normal) subgroup of G. Since |N | must
divide |G| = p and |N | 6= 1 (it’s non-trivial). We must have |N | = p and so N = G. Thus G has no
non-trivial (normal) subgroups. Thus it’s simple. �

Lemma: Let N be a normal subgroup of An. If N contains a 3-cycle, then N = An.

proof: Suppose N contains a 3-cycle. We can relabel 1, 2, . . . , n so this 3-cycle is labeled (123). So
without loss of generality assume (123) ∈ N and so (123)2 = (132) ∈ N since N is a subgroup.

If n = 3, then A3 = {(1), (123), (123)2} ⊆ N so N = A3. So assume n ≥ 4 and pick some k ≥ 4.
(12)(3k)(132)[(12)(3k)]−1 = (12)(3k)(132)(12)(3k) = (12k) ∈ N . So (12k) ∈ N for al k ≥ 3.

Let a, b, c be distinct numbers between 3 and n. (1a2) = (12a)(12a) ∈ N . (1ab) = (12b)(12a)(12a) ∈
N . (2ab) = (12b)(12b)(12a) ∈ N . (abc) = (12a)(12a)(12c)(12b)(12b)(12a) ∈ N . Thus N contains
all 3-cycles.

Finally notice that if a, b, c, d are all distinct, then (ab)(cd) = (adb)(adc) and (ab)(ac) = (acb)
and (ab)(ab) = (1) so any permutation written as a product of an even number of transpositions
can be written as a product of 3-cycles. Thus An is generated by 3-cycles. So if N contains all the
3-cycles, then N = An. �

Theorem: An is simple when n ≥ 5 and n = 3.

proof: Note that An only makes sense for n ≥ 2. A2 is trivial and A4 has a proper normal subgroup
H = {(1), (12)(34), (13)(24), (14)(23)}, so A2 and A4 are not simple. A3 = 〈(123)〉 ∼= Z3 so it’s
simple (& abelian). Now let n ≥ 5 and let N be a non-trivial normal subgroup of An.

Case 1: N has an element with a cycle of length ≥ 4. Without loss of generality we can relabel 1,
2, . . . , n so that this cycle is (123 · · · r) for some r ≥ 4. So there exists some σ = (12 · · · r)τ ∈ N
where (12 · · · r) and τ are disjoint. Consider (123) ∈ An so that (123)σ(123)−1 ∈ N since N is
normal. Thus σ−1(123)σ(123)−1 ∈ N since N is a subgroup and thus closed under inverses and the
product. σ−1(123)σ(123)−1 = τ−1(r · · · 321)(123)(123 · · · r)τ(123)−1 = τ−1τ(r · · · 321)(2314 · · · r) =
(13r) ∈ N . Thus N contains a 3-cycle so N = An.

Case 2: N has an element with a 3-cycle and no cycles of length > 3 (which is covered by case 1).
Call this element σ.

First, suppose σ has at least 2 disjoint 3-cycles. Without loss of generality suppose they



are (123) and (456) so σ = (123)(456)τ where τ is disjoint from (123) and (456). Consider
(124) ∈ An. Then (124)σ(124)−1 ∈ N and so σ−1(124)σ(124)−1 ∈ N . Thus σ−1(124)σ(124)−1 =
τ−1(456)−1(123)−1(124)(123)(456)τ(124)−1 = (654)(321)(124)(123)(456)(421) = (14263) ∈ N . So
N contains a cycle of length > 3. Thus N = An by case 1.

Next, suppose σ has 1 cycle of length 3 and then just disjoint transpositions. Without loss of
generality suppose this 3-cycle is (123). So σ = (123)τ ∈ N where τ is the product of disjoint
transpositions so that τ = τ−1. Then σ2 ∈ N since N is a subgroup. σ2 = (123)τ(123)τ =
(123)2τ 2 = (123)2 = (132). Thus N contains a 3-cycle so N = An.

The only possibility left is that σ is just a 3-cycle. But then N contains a 3-cycle so N = An.

Case 3: N contains an element which is the product of disjoint transpositions. Call it σ. Now since
N is a subset of An, σ is even. So σ must contain at least 2 disjoint transpositions. Without loss of
generality assume these transpositions are (12) and (34). So σ = (12)(34)τ where τ is disjoint from
(12) and (34) and τ = τ−1 since it’s the product of disjoint transpositions itself. (123)σ(123)−1 ∈
N since N is normal and thus σ−1(123)σ(123)−1 ∈ N since N is closed under inverses and
products. σ−1(123)σ(123)−1 = τ−1(34)(12)(123)(12)(34)τ(132) = (34)(12)(123)(12)(34)(132) =
(13)(24) ∈ N . So (135)(13)(24)(135)−1 ∈ N and also (13)(24)(135)(13)(24)(135)−1 ∈ N . But
(13)(24)(135)(13)(24)(135)−1 = (135). Thus N contains a 3-cycle so N = An [Note: We didn’t use
the fact that n ≥ 5 until the very end!] �

Corollary: Let n ≥ 5. The only normal subgroups of Sn are {(1)}, An, and Sn.

proof: First note that these are in fact normal subgroups of Sn since the trivial subgroup and
the whole group are always normal. An is the kernel of the sign homomorphism so it’s normal [or
we could use the fact that An is a subgroup of index 2 and index 2 subgroups are always normal].

Let N be a normal subgroup of Sn. Then N ∩ An is normal in An. Thus N ∩ An = An or
N ∩ An = {(1)}. If N ∩ An = An. Then either N = An or |N | > n!/2 so |N | = n! (there are no
divisors of ` between `/2 and `) so N = Sn.

Now let’s consider the case where N ∩ An = {(1)}. Thus N − {(1)} is a collection of odd
permutations. Let σ, τ ∈ N − {(1)}. Then στ ∈ N but στ is even since the product of two odd
permutations is an even permutation. Thus στ = (1). This applies to all non-identity elements
of N . So σσ = (1) if σ 6= (1) in N as well. Thus σσ = (1) = στ so σ = τ . Thus if N 6= {(1)},
then N = {(1), τ} where τ 2 = (1). So τ is a product of disjoint transpositions (this must be the
case since its order is 2). Also, τ must be odd so it’s the product of an odd number of disjoint
transpositions.

Suppose τ is a single transposition. Without loss of generality assume τ = (12), then (13)(12)(13) =
(23) ∈ N since N is normal in Sn. But (12) 6= (13) so N has more than 2 elements (contradiction).

Finally consdier the case where τ is the product of more than a single transposition. Without
loss of generality assume two the disjoint transpositions are (12) and (34). So τ = (12)(34)σ
where σ is disjoint from (12) and (34), then (13)τ(13) = (13)(12)(34)σ(13) = (14)(23)σ ∈ N . But
τ = (12)(34)σ 6= (14)(23)σ so N has more than 2 elements (contradiction).

Therefore, N cannot contain a single odd permuation. Thus N = {(1)}. �


