
Math 4720 & 5210 Free Groups Abstract Algebra

Often one first encounters free groups explained in terms of equivalence classes of words over an alphabet being
multiplied by concatenation. While this is fine for a surface level understanding and gives one a construction of
this type of free object, it is difficult or impossible to use such a description to rigorously prove anything about free
groups. For rigorous proofs one needs a good characterization that is independent of any particular construction.
Such a characterization (that can should be taken as the definition) of free groups is the so called universal property
discussed later.

Construction: Words with Friends

First, let’s sketch out the standard construction of a free group. Start with any set X. This will be our set of
generators. Next, create a new (disjoint) set X−1 = {x−1 |x ∈ X}. So far these are just symbols/labels. The −1
exponent doesn’t (yet) mean that x−1 is the inverse of x (but it will later). Now X ∪ X−1 is our alphabet. Next,
form all words over our alphabet: (X ∪X−1)∗ = {a1a2 · · · am |m ∈ Zm≥0 and for each i either ai ∈ X or ai ∈ X−1}.
So a word over the alphabet X ∪X−1 is just a finite string of letters drawn from X and X−1. Notice that we allow
m = 0 (the empty word). Let us denote the empty word by ε. Note: We will use standard exponent abbreviations
so that, for example, aaac−1c−1baa = a3c−2ba2.

Now we introduce an equivalence relation. For any w1, w2 ∈ (X ∪X−1)∗ and x ∈ X, require that w1xx
−1w2 ∼

w1w2 and w1x
−1xw2 ∼ w1w2. Then let ∼ be the equivalence relation generated by those requirements (formally

one takes all equivalence relations that satisfy the above conditions and intersect to find the least such equivalence
relation satisfying these requirements). Long story short, we have that for w,w′ ∈ (X ∪X−1)∗, w ∼ w′ iff w′ can be
obtained from w after a finite number of insertions and deletions of xx−1 or x−1x where x ∈ X.

As a random example, let X = {a, b, c}. Then acc−1ba−1bb−1ac ∼ acc−1ba−1ac ∼ aba−1ac ∼ abc ∼ b−1babc.
Thus acc−1ba−1bb−1ac ∼ b−1babc.

Now denote the equivalence class of a word by [w] = {w′ ∈ (X ∪X−1)∗ |w ∼ w′} and write the set of equivalence
classes as F (X) = (X ∪X)∗/ ∼.

Notice that given two words w1, w2 ∈ (X ∪ X−1)∗, we have that w1w2 ∈ (X ∪ X−1)∗ (this is concatenation,
that is, putting two words together one right after the other). Now for the sneaky step. Define [w1][w2] = [w1w2].
We just defined the product of equivalence classes of words to be the equivalence class of the representatives put
together (concatenated). It is not clear that this operation is well defined: if w1 ∼ w′

1 and w2 ∼ w′
2 is it the case

that w1w2 ∼ w′
1w

′
2? The answer is yes, but while this may seem intuitively clear, writing down a rigorous proof

is tricky. Many texts either ignore this step or give a less than convincing proof. I recommend Joseph Rotman’s
“An Introduction to the Theory of Groups” (4th edition) chapter 11 if you would like to see a careful proof of the
existence of the group F (X).

Once we know that this operation on F (X) is well defined, everything else necessary to show that F (X) is a
group is absolutely trivial to prove. Closure is obvious. Associativity follows because concatenation is associative.
The equivalence class of the empty word, [ε], serves as the identity. Finally take any word w = x1x2 · · ·xℓ and swap
out each letter xi for its “inverse” (i.e. if xi ∈ X exchange it for x−1

i and if xi = y−1
i ∈ X−1 let x−1

i = yi). Now
define w−1 = x−1

ℓ · · ·x−1
1 (invert each letter and write backwards). It isn’t hard to show that ww−1 ∼ ε ∼ w−1w.

Thus [w]−1 = [w−1] exists (i.e., we have inverses).
For example, again let X = {a, b, c}. Then [ab−1c3a−2]−1 = [a2c−3ba−1] notice that (ab−1c3a−2)(a2c−3ba−1) =

ab−1ccca−1a−1aac−1c−1c−1ba−1 ∼ ab−1ccca−1ac−1c−1c−1ba−1 ∼ ab−1cccc−1c−1c−1ba−1 ∼ · · · ∼ aa−1 ∼ ε.
We are ready to define what a free group is.

Characterization: A Universal Property

Definition: Let X be a set. Then the free group generated by X is a group F (X)
equipped with a map i : X → F (X) such that given any group G and function φ : X → G
there exists a unique homomorphism φ̂ : F (X) → G such that φ̂ ◦ i = φ.
This means that every function from our set of generators, X, into any group G can be
uniquely extended to a homomorphism from F (X) to G. X

F (X)

G

i ∃! φ̂

φ

Consider the group G = {±1} (under multiplication). Suppose that x, y ∈ X such that x ̸= y. Let φ(x) = −1,
φ(y) = 1, and let all other elements in X map to 1. Then there is a homomorphism φ̂ : F (X) → G such that
φ̂(i(x)) = φ(x) = −1 ̸= 1 = φ(y) = φ̂(i(y)). Therefore, we must have that i(x) ̸= i(y). Therefore, i is an injection
(i.e., one-to-one). Thus, it is harmless to assume i is just the inclusion map: i(x) = x.
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Theorem: F (X) (as constructed above) is free and generated by X.

Proof: (Sketch) Here we let i : X → F (X) be the inclusion map i(x) = [x] (send the letter x to its equivalence
class). Suppose that φ : X → G is a map into a group G.

First, if x−1 ∈ X−1, we define φ(x−1) = φ(x)−1, so our map is extended to X ∪X−1. Now define φ(x1 . . . xℓ) =
φ(x1) · · ·φ(xℓ), so our map is defined on (X ∪X−1)∗. Next, notice that for any w1, w2 ∈ (X ∪X−1)∗ and x ∈ X,
φ(w1xx

−1w2) = φ(w1)φ(x)φ(x)
−1φ(w2) = φ(w1)φ(w2) = φ(w1w2). Likewise, φ(w1x

−1xw2) = φ(w1w2). Thus φ is
constant on equivalence classes so we induce a mapping on F (X) = (X ∪X−1)∗/ ∼.

Call this map φ̂ : F (X) → G. By construction, this map preserves the operation and thus is a homomorphism.
Also, again by construction, we have φ̂ ◦ i = φ. Finally, suppose ψ : F (X) → G is any homomorphism such that
ψ ◦ i = φ. Then ψ([x1 · xℓ]) = ψ([x1]) · · ·ψ([xℓ]) = ψ(i(x1)) · · ·ψ(i(xℓ)) = φ(x1) · · ·φ(xℓ) = φ̂([x1]) · · · φ̂([xℓ]) =
φ̂([x1 · · ·xℓ]). This establishes uniqueness. ■

Going forward, let’s drop the brackets and understand that when we reference a word over a set of generators in
a free group, we really mean the equivalence class of that word.

Theorem: The free group on X, F (X) is uniquely determined (up to isomorphism) by the universal property.

Specifically, given free groups on X, i1 : X → F1 and i2 : X → F2, there is a (unique) isomorphism î2 : F1 → F2

such that î2 ◦ i1 = i2. Moreover, î1
−1

= î2.

Proof: Notice that in the diagram for F1, if we set G = F1 and φ = i1, we get that
idF1 ◦ i1 = i1 so that idF1 is the unique homomorphism extending i1 here. A similar
statement holds for F2.
Next, consider the diagram for F1 with G = F2 and φ = i2. Then we get a (unique)

homomorphism î2 : F1 → F2 where î2 ◦ i1 = i2. Interchanging the roles of F1 and F2, we
get a (unique) homomorphism î1 : F2 → F1 where î1 ◦ i2 = i1.

X

F1

F1

i1 idF1

i1

X

F1

F2

i1 î2
î1

i2

idF1
= î1 ◦ î2

î2 ◦ î1 = idF2

Notice that î1 ◦ î2 : F1 → F1 is a homomorphism such that î1 ◦ î2 ◦ i1 = î1 ◦ i2 = i1.
Thus î1 ◦ î2 solves the same problem that idF1

did at the beginning of our proof.

Thus by uniqueness we must have that î1 ◦ î2 = idF1
. Likewise, î2 ◦ î1 = idF2

.

Therefore, î1 is the desired isomorphism with inverse î2. ■

Thus if we can show that a group satisfies the necessary universal property, it must
be the free group on that generating set (determined up to isomorphism).

Theorem: Let X = ∅ (the empty set). Then F (∅) is the trivial group.

Proof: We show that the trivial group {1} satisfies the universal property associated with X = ∅.
We have i : ∅ → {1} is the empty map (it does nothing). Let φ : ∅ → G for some group G. Then again φ is

the empty map. Next, there is only one homomorphism from the trivial group to any group: φ̂ : {1} → G must be
φ̂(1) = 1 (we must send the identity 1 to the identity in G).

Trivially, φ̂ ◦ i = φ since both sides are empty maps. Thus we have shown that every φ uniquely extends to a
homomorphism. Thus {1} is the free group on no generators (i.e., the empty set). ■

Quick Theorems: Using the Universal Property

Let’s prove a few basic things about free groups. First, let’s show that F (X) is non-trivial iff X ̸= ∅. Actually,
it would be just as easy to show that F (X) is infinite whenever X ̸= ∅, but I’ll save that for a homework problem.

Theorem: F (X) is non-trivial iff X ̸= ∅

Proof: We already know that F (∅) ∼= {1}. Let’s take care of the other implication. Suppose that X ̸= ∅. To show
that F (X) is non-trivial we select a nontrivial model group. We will use G = {±1}.

Since X is non-empty, there is some x0 ∈ X. Let φ(x0) = −1 and set φ(x) = 1 for any x ∈ X − {x0} (that may
be empty but this is doesn’t matter). There exists a unique homomorphism φ̂ : F (X) → {±1} such that φ̂ ◦ i = φ.
In particular, φ̂(x0) = −1 so that φ̂(x20) = (−1)2 = 1. Therefore, we have a homomorphism from F (X) onto {±1}.
Thus F (X) cannot be trivial. ■
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It turns out that for X ̸= ∅, F (X) is infinite (this would have been just as easy to prove). A free group on a
single element is just infinite cyclic (i.e., isomorphic to Z under addition).

Theorem: F ({x0}) ∼= Z

Proof: Let i : {x0} → Z be defined by i(x0) = 1. We will show that Z has the necessary universal property. Let
φ : {x0} → G be a function where G is some group. So φ(x0) = g for some fixed g ∈ G.

Define φ̂ : Z → G by φ̂(n) = gn. Notice that φ̂(n+m) = gn+m = gngm = φ̂(n)φ̂(m). Thus φ̂ is a homomorphism.
Note that φ̂(i(x0)) = φ̂(1) = g1 = g = φ(x0). It is easy to see that φ̂ is the only possible homomorphism with φ̂◦i = φ.

Thus by the uniqueness of free groups, we have F ({x0}) ∼= Z ■

What if X has more than one element? Well, then F (X) gets much much more complicated. For example, it is
no longer Abelian.

Theorem: Let X be a set with at least two elements. Then F (X) is non-abelian.

Proof: To show F (X) is non-abelian we choose a non-abelian model to force this property to appear. In particular,
let’s consider the symmetric group S3 (permutations on three elements).

Let x1, x2 ∈ X with x1 ̸= x2 (these exist since X has at least two elements). Define a function φ : X → S3 by
φ(x1) = (12), φ(x2) = (23), and φ(x) = (1) for all other x ∈ X.

There exists a unique homomorphism φ̂ : F (X) → S3 such that φ̂◦ i = φ. In particular, φ̂(x1x2) = φ̂(x1)φ̂(x2) =
φ(x1)φ(x2) = (12)(23) = (123). However, φ̂(x2x1) = φ̂(x2)φ̂(x1) = φ(x2)φ(x1) = (23)(12) = (132). Therefore,
φ̂(x1x2) ̸= φ̂(x2x1) so that x1x2 ̸= x2x1. In particular, F (X) is not Abelian. ■

It is not hard to show that if |X1| = |X2| (X1 and X2 have the same cardinality), then F (X1) ∼= F (X2). The
converse is also true, so that F (X1) ∼= F (X2) iff |X1| = |X2|. The converse is a little trickier to prove. One usually
does this by reducing the problem to free abelian groups and using uniqueness of rank. Uniqueness of rank in free
abelian groups is established by reducing to vector spaces.

It is also true that every subgroup of a free group is free. This result is quite difficult to establish. As a
consequence, every nonidentity element must have infinite order (such an element generates a cyclic subgroup that
must being nontrivial and free must be infinite). Other stranger things are true. Like even though a subgroup of a
free group is free, this subgroup may require a larger set of generators!

Generators and Relations: Everything is a Quotient of a Free Group

Definition: Let X be a set and R ⊆ (X ∪ X−1)/ ∼ be a collection of words. Let N be the smallest normal
subgroup containing R (take all normal subgroups containing R and intersect). The quotient group F (X)/N , denoted
⟨X |R⟩, is called the group with generators, X, and relations, R.

When R is a finite set, we will usually write its elements as a list. If r ∈ R ⊆ N , then we have rN = N in
F (X)/N (i.e., r is equivalent to the identity in F (X)/N . Thus we will write r = 1 (understanding that this holds
mod N). Sometimes, instead of listing a relation r, we write r = 1. Or we might write h = k when we actually mean
hk−1 is in the set of relations.

For example, ⟨x |x3 = 1⟩ is the group generated by x subject to the relation x3 = 1. It should seem reasonable
to conclude that ⟨x |x3 = 1⟩ = {1, x, x2} ∼= Z3.

Now we can denote free groups as F (X) = ⟨X | ⟩ (i.e., no relations). So for example, ⟨x | ⟩ ∼= Z and ⟨ | ⟩ ∼= {1}.
Another example, Dn = ⟨x, y |xn = 1, y2 = 1, (xy)2 = 1⟩. This is the dihedral group of order 2n. It turns out

that this is isomorphic to the group of symmetries of a regular n-gon. Notice y2 = 1 means that y = y−1. Next,
(xy)2 = 1 so that xyxy = 1 so that xyxyy−1 = y−1 so xyx = y since y = y−1. This then implies that xy = yx−1

and yx = x−1y.
In particular, any string of powers of x’s and y’s can be rewritten so that all of the x’s are to the left and y’s

to the right. But xn = 1, so exponents of x can be reduced mod n. Likewise, exponents of y can be reduced
mod 2. So we can write each element in Dn as xiyj where i = 1, . . . , n − 1 and j = 0, 1. Therefore, Dn =
{1, x, . . . , xn−1, y, xy, . . . , xn−1y}.

Theorem: Every group is isomorphic to a group described by generators and relations.

Proof: Let G be a group, so in particular, G is a set. Consider the free group F (G). Let φ = idG : G → G (so
φ(g) = g). There exists a homomorphism φ̂ : F (G) → G. Since φ̂ ◦ i = φ and φ is onto, φ̂ is onto. Thus we have
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a homomorphism from F (G) onto G. The first isomorphism then gives us F (G)/ker(φ̂) ∼= G. Let R = ker(φ̂). We
have G ∼= F (G)/R = ⟨G |R⟩. ■

We call the generators X paired with relations R a presentation of the group ⟨X |R⟩. If both X and R are finite,
we call ⟨X |R⟩ finitely presented.

Theorem: Let φ : X → G be a function, R ⊆ (X ∪ X−1)∗ (a set of words over the
generators X), and suppose φ(x1) · · ·φ(xℓ) = 1 for all r = x1 · · ·xℓ ∈ R. Then there exists
a unique homomorphism φ̂ : ⟨X |R⟩ → G such that φ̂ ◦ i = φ where i : X → ⟨X |R⟩ sends
x to its coset in ⟨X |R⟩.

X

⟨X |R⟩

G

i ∃! φ̂

φ

The proof of the above theorem is straightforward, but I will skip it. In fact, we could (?should?) use this as the
definition of a group generated by X with relations R. In a nearly identical proof, one can show that any two groups
satisfying this kind of universal property are isomorphic. This characterization says is that ⟨X |R⟩ is the free-est
possible group satisfying the specified relations.

Computing with Generators and Relations: Word Problems are Too Hard!

Since every group can be described by generators and relations, one might think that this approach is a cure all.
However, it turns out that most everything you might want to know about finitely presented groups in general is
incomputable.

For example, given a random G = ⟨X |R⟩ and suppose w1 and w2 are words over X ∪X−1. One might want to
know if w1 = w2. An algorithm determining when w1 and w2 are equal in G would solve the word problem for G. It
turns out that there is a finitely presented group with an incomputable word problem!

More than that, there is no algorithm that can determine if a random finitely presented group is finite or infinite.
There is no such algorithm to decide if it’s abelian or not. There is no algorithm that can determine if two finitely
presented groups are isomorphic. In fact, there is no algorithm to determine if a random finitely presented group is
trivial or not!

Not all is hopeless, if we know ahead of time that our finitely presented group is abelian or finite, we can compute
everything about it (for finite groups the Todd-Coxeter algorithm will enable us to do this). But for a general finitely
presented group, things are bleak. Chapter 12 of Rotman’s group theory text covers the word problem in group
theory and related issues.

Other Free Things: Same Old, Same Old

We could also ask about other kinds of free objects. Generally we define a free thing generated by a set using
the same universal property we used for groups. For example, to define a free abelian group we just need to slap the
word “abelian” in front of every occurrence of “group” in the definition of free group. To define what a free ring is
just swap out the word “group” for “ring”.

While you can always write down a definition of how your free algebraic object should behave. Such an object does
not always exist. For example, there are no free fields (if you Google “free fields” you will run into a bunch of Physics
related pages. This use of “field” is related to vector fields not the abstract algebra kind of field). There are such
things as free rings, free associative algebras (tensor algebras), free commutative associative algebras (polynomials),
free vector spaces (all vector spaces are free), free Lie algebras, etc.

In fact, free objects exists for every “relationally defined” algebraic object. There is even a universal construction
of such things that would include our construction as a special case!
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