- #1 Units and Zero Divisors Let R be a ring with 1. Recall that $R^{\times} = \{u \in R \mid u^{-1} \text{ exists }\}$ is the group of units. Also, if $a, b \in R$ such that $a \neq 0$, $b \neq 0$ but ab = 0, then we call a a left zero divisor and b a right zero divisor. A zero divisor is either a left or right zero divisor (or both).
 - (a) Let $u \in R^{\times}$. Show that $-u \in R^{\times}$.
 - (b) Suppose that $r \in R$ is a zero divisor. Show that r is not a unit. Note: You need to consider two cases. One case where r is a left zero divisor and another where r is a right zero divisor.
 - (c) Now suppose that R is commutative. Let $\mathcal{L}_r: R \to R$ where $0 \neq r \in R$ and $\mathcal{L}_r(x) = rx$. So \mathcal{L}_r is left (and also because R is commutative, right) multiplication by r. Show that \mathcal{L}_r is one-to-one and onto if and only if r is a unit. Show that \mathcal{L}_r is one-to-one if and only if r is not a zero divisor.
- #2 A Centrist Approach Let R be a ring and define $Z(R) = \{r \in R \mid rx = xr \text{ for all } x \in R\}$. This is the center of the ring R.
 - (a) Show that Z(R) is a subring of R. Moreover, if R is a ring with 1, so is Z(R).
 - (b) Let D be a division ring (i.e., skew field). Show that Z(D) is a field.
- #3 Not the Same Let R and S be rings with 1.
 - (a) Show that if $R \cong S$ then $R^{\times} \cong S^{\times}$ (isomorphic rings have isomorphic groups of units).
 - (b) Show that $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic.
- #4 An Ideal Problem Let $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ be a chain of ideals in a ring R. Prove that $I = \bigcup_{i=1}^{\infty} I_i$ is an ideal of R.
- #5 Sticking to my Principals Let R be a commutative ring with 1 and let $a \in R$. Recall that $(a) = \{ra \mid r \in R\}$ is the principal ideal generated by a.
 - (a) Prove that (a) is an ideal.
 - (b) List all of the (distinct) principal ideals in \mathbb{Z}_{12} . Show their contents. Example: $(0) = \{0\}$.
 - (c) Let R be an integral domain. Show that (a) = (b) if and only if a and b are associates (i.e., a = ub for some unit $u \in R^{\times}$).