Math 4720/5210 Homework #3 Due: Mon., Feb. 12t8, 2024

#1 Gaussian Integers The Gaussian integers Z[i] = {a + bi | a,b € Z} are a Euclidean domain

when equipped with the norm: N(a + bi) = (a + bi)(a + bi) = (a + bi)(a — bi) = a® + b

In every Euclidean domain we have N(z) < N(zw), but here we have something even stronger: the norm is multiplicative
(ie. N(zw) = N(2)N(w)). Note also that for z = a + bi € Z[i], we have z = z (i.e. a — bi = a + bi) iff 2 is an integer
(i.e. z=a). Also, it may help to note that z divides w iff Z divides @ (since zk = w <= zZk = w).

Consider 0 # n € Z. Notice if n properly factors in Z, then it also properly factors in Z[i]. However, the converse
does not necessarily hold (for example, 5 = (1 4 2¢)(1 — 2¢) is a proper factorization on Z[i] but 5 is irreducible in Z).
For clarity, in what follows, when we say prime integer or just prime we mean prime in Z and when we say Gauss
prime we mean prime in Z[i].

(a)

(b)
(c)
(d)

()

Run through the standard argument showing that elements of norm 1 are units and vice-versa.

Then use that to identify the units of the Gaussian integers (i.e., Z[i]™).
Show that 7 is a Gauss prime iff 7 is a Gauss prime. [Note: Prime = irreducible since Z[i] is a UFD.]
Show if N () is a prime integer, then 7 must be a Gauss prime.

Let p be a positive prime (integer). Show that either p is a Gauss prime or p = 7«7 for some Gauss prime 7.
Hint: If p properly factors, what do norms tell us?

Let p be any integer. Show that p = 77 for some 7 € Z[i] iff p = a® + b? for some a,b € Z.

Lemma: If 7 is a Gauss prime, then N(7) = 77 is either a prime integer or the square of a prime integer.

proof: Let m be a Gauss prime (so 7 is not a unit — thus N(x) > 1). By part (b), we also know 7 is also
Gauss prime. Consider 77 = N(w) € Zs;. Either N(rw) is a prime integer (done) or it properly factors in Z
(and thus also in Z[i]), say N(m) = AB for some A, B € Zs;. Considering part (a), A and B are definitely
not units in Z[{]. Now A and B can be factored into irreducibles in Z[i] (since it is a UFD). However, 77 is
already a factorization into irreducibles. Therefore, A and B cannot be properly factored in Z[i] (otherwise AB
would have more irreducible factors than the factorization 77 does). Thus A and B do not properly factor in
Z (i.e., they are prime integers). Finally, by uniqueness of factorizations, either 7 is an associate of A and 7 of
B or vice-versa. WLOG assume the former. Recalling that associates share the same norms as do conjugates:
A%? = N(A) = N(m) = N(7) = N(B) = B? (i.e., N(7) is the square of a prime integer).

Lemma: Let p be a prime integer. Then p is a Gauss prime iff 22 + 1 is irreducible in L[]

proof: In a PID, an ideal (r) is maximal (i.e., the associated quotient ring is a field) if and only if r is irreducible
7l
(=prime). Therefore, since Z[i] is a PID, p is a Gauss prime exactly when Z[i]/(p) is a field. Since M/ =

()
Z[x] Zp[7] . : : . 2 : ; 2 :
(b2 + 1) = /(:r2 +1) we have Z[i]/(p) is a field if and only if Z,[z]/(z* + 1) is a field (i.e., (z* +1) is

maximal in Z,[z]). But Z,[z] is also a PID, so this is true if and only if 22 + 1 is irreducible in Z,[z].

Let p be a prime integer. Show that p = 77 from some 7 € Z[i] iff 22 = —1 (mod p) has an integer solution.

Hint: Apply the lemma and keep in mind (when working over a field):
quadratics are irreducible iff they have no roots.

Lemma: Let p be an odd prime (integer). Then a € Z is a solution of 22 = —1 (mod p) iff
a is an element of order 4 in U(p) = Z,’ (the group of units in Z,).

proof: Since p is odd, —1 # 1 (mod p). If a is a solution (i.e., a> = —1 mod p), then the order of a is not 1 or 2.
However, a* = (—1)2 = 1 (mod p). Thus the order of a is 4. Conversely, if a has order 4, then a* = 1 (mod p).
Therefore, a is a root of 2* —1 = (22 —1)(2% + 1) in Zy[z]. But a has order 4, so a? # 1 (mod p). This means that
a is not a root of #2 — 1. Therefore, a must be a root of 2% + 1 (i.e., a> + 1 = 0 mod p). Thus a?> = —1 (mod p).



(2)
(h)

Proposition: Let p be a prime integer. 22 = —1 (mod p) has an integer solution iff p # 3 (mod 4).

proof: First, any prime integer congruent to 0 or 2 (mod 4) must be even. The only such prime is p = 2. Notice
that 12 =1 = —1 (mod 2). Thus we can turn our attention to odd primes. Assume p is odd.

Suppose that 22 = —1 (mod p) has an integer solution, say a. Then by the previous lemma |a| = 4 in the group
Z, . Notice that |Z;| =p —1. So 4 divides p — 1. Therefore, p =1 # 3 (mod 4).

Conversely, if p # 3 (mod 4), then since p is odd we have that p = 1 (mod 4). Therefore, 4 divides p — 1. The
group Z is cyclic (we will eventually prove that any finite subgroup of the group of units of a field is cyclic).
Therefore, this group must have an element of order 4, say a. Therefore, by the lemma above a is an integer
solution of 22 = —1 (mod p).

In summary, we have proven the following theorem. ..

Theorem: Let p be a positive prime integer. The following are equivalent:
e p = 77 for some Gauss prime 7.

p = a® + b? for some a,b € Z.

22 = —1 (mod p) has an integer solution.

p # 3 (mod 4).

This theorem allows us to identify the primes in Z[i]. Factorizations can now be accomplished by focusing on
factoring (as an integer) the norm of an element and then seeing what that says about the element in Z[].

Example: 6 + 2i = 2(3 +i). Notice that N(3 +4) = 32 + 12 = 10 so 3 + i is not a Gauss prime. 10 = 2 - 5.
2=(1+¢)(1—4)and 5= (1+2i)(1—2:). Thus (1+4¢)(1—4)(1+2¢)(1—2i) =2-5=10= (341)(3 —1) so because
Z[i] is a UFD, the prime factors of 3 + ¢ must be found among 1 +¢ and 1 & 2i. Through trial and error we find
that 3+ = (1 — 4)(1+ 2i). Thus 6 +2i = 2(3 +4) = (1 + ) (1 — 8)(1 —d)(1 + 2i) = (1 +8)(1 — 0)2(1 + 24).

Example: 6 + 97 = 3(2 + 3i). Notice that 3 = 3 (mod 4) so 3 is not only a prime but also a Gauss prime.
Next, N(2 + 3i) = 22 + 3% = 13 (prime) so 2 + 3i is also a Gauss prime. Therefore, 6 + 9i = 3(2 + 3i) is a prime
factorization.

Factor 700 in Z and then in Z[i].
Factor 33 + 77i in Z[i].

#2 Euclid’s Revenge! A quotient of Q[z].

(a)

()

Find the GCD of 23 — 222 + 1 and 2% — 2 — 3 in Q[z] and express it as a linear combination (i.e. run the Extended
Euclidean Algorithm).

Note: 1T would like you to practice doing this by hand, but this can be very tedious. If you would like to check
your work with software, Maple can be coaxed into doing these calculations. Alternatively, I have written some
Sage demos which can automate this calculation: https://www.BillCookMath.com/sage

Specifically, https://www.BillCookMath.com /sage/algebra/Euclidean_algorithm-poly.html is what we want here.

Q[z]

Let I = (23 — 222 +1). Is 22 — 2 — 3+ I zero, a zero divisor, or a unit in /I? Prove your result (If zero, why?

If a zero divisor, what is a non-zero element that multiplied by gives zero? If a unit, what’s its inverse?).

Q[z]

Let I = (23 —22% +1). Is 22 — 1 + I zero, a zero divisor, or a unit in /I? Prove your result (If zero, why? If

a zero divisor, what is a non-zero element that multiplied by gives zero? If a unit, what’s its inverse?).

#3 Prime, maximal, both, or neither? Identify the following ideals as prime, maximal, both, or neither.

(a) (2% —5) in Q[z] (b) (22 —5) in R[z] (c) (22+41) in Q[x] (d) (22 +1) in Z[x]

#4 A Rational Problem As in the Factorization Handout, compute the inverse of z2+2+2+1 in Q[%]/ where I = (z3—3).
1

Then use this result to rationalize the fraction

1

213838 (i.e. write this fraction as a + b - 3'/3 4+ ¢ 3%/3 for some

a,b,c € Q).
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