Homework #5

Due: Fri., Mar. 8th, 2024

- #1 Irreducible Problems: Let \mathbb{F} be a field.
 - (a) Let $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{F}[x]$ be irreducible and f(x) is not a multiple of x. Prove that $g(x) = a_0 x^n + \dots + a_{n-1} x + a_n$ (reverse the order of the coefficients) is irreducible in $\mathbb{F}[x]$ as well. Note/Hint: $x^n f(1/x) = g(x)$ is called the reciprocal polynomial of f(x).

Why not a multiple of x? Notice if f(x) = ax = ax + 0, then g(x) = 0x + a = a.

But constant polynomials are either zero or a unit and thus not irreducible.

- (b) Use part (a) and Eisenstein's criterion to show $h(x) = 12x^5 24x^4 + 6x^2 + 18x 1$ is irreducible in $\mathbb{Q}[x]$.
- (c) Show $\ell(x) = 5x^3 + 9x^2 2x + 2$ is irreducible in $\mathbb{Q}[x]$ by reducing modulo p for some prime p.
- (d) We could also show that $\ell(x)$ is irreducible using the rational root theorem. Sketch out such a proof. [You don't actually have go through the trouble of plugging numbers into $\ell(x)$.]
- #2 Classical Formulas: Find the roots of these polynomials using the cubic / quartic formula.
 - (a) $f(x) = x^3 24x^2 24x 25$
 - (b) **[Grad.]** $f(x) = x^4 15x^2 20x 6$

Note: Calculate your resolvent cubic. Reduce the resolvent so you have something of the form $u^3 + qu + r$. Then you may "cheat" and use the rational root test to discover a nice root of $u^3 + qu + r$. Using the cubic formula there is nasty.

- #3 Algebraic Difficulties: Let \mathbb{E} be an extension field of \mathbb{F} .
 - (a) Let $\alpha, \beta \in \mathbb{E}$ be algebraic over \mathbb{F} and $\alpha \neq 0$. Prove that $\alpha + \beta$, $\alpha\beta$, and α^{-1} are also algebraic over \mathbb{F} . [*Hint:* Don't try to find polynomials. Instead, use the degree formula prove $\mathbb{F}(\alpha, \beta)$ is finite dimensional over \mathbb{F} .]
 - (b) Let $\mathbb{K} = \{ \alpha \in \mathbb{E} \mid \alpha \text{ is algebraic over } \mathbb{F} \}$. Prove that \mathbb{K} is a subfield of \mathbb{E} containing \mathbb{F} .
 - (c) [Grad.] Define $\overline{\mathbb{Q}} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ is algebraic (over } \mathbb{Q}) \}$. This is called the field of algebraic numbers. Briefly explain why $\overline{\mathbb{Q}}$ (over \mathbb{Q}) is an algebraic extension. Then prove this is **not** a finite extension.

Notation? The bar over $\mathbb Q$ denotes a kind of closure. It turns out that $\overline{\mathbb Q}$ is the algebraic closure of $\mathbb Q$. This is the smallest extension of $\mathbb Q$ such that every polynomial (with coefficients in that extension) splits. For example, the fundamental theorem of algebra says that $\overline{\mathbb R} = \mathbb C$.