
Math 5160 Complex Differentiability Supplement

For a function of one variable, differentiability is synonymous with the existence of the derivative. However, the notion
of differentiability is much more subtle for functions of more than one real variable. But when we consider a function of a
single complex variable, once again differentiability is equivalent to the existence of the derivative. Let’s see why that is true
and how complex differentiability relates to real differentiability.

Definition: Let f : D → C where D ⊆ C and z0 = x0 + y0i ∈ D. We say f(z) is differentiable at z = z0 if

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
= lim

z→z0

f(z)− f(z0)

z − z0
exists (where z = z0 +∆z, z = x+ yi, and ∆z = ∆x+∆y i).

Let’s see how this relates to differentiability of a function on R2. First, notice that f(z) being differentiable at z = z0 is

the same as there being some number L = p + qi ∈ C such that lim
z→z0

f(z)− f(z0)

z − z0
= L. This limit exists (and equals L) if

and only if lim
z→z0

f(z)− f(z0)

z − z0
−L = 0 and so lim

z→z0

f(z)− f(z0)

z − z0
− L(z − z0)

z − z0
= 0. Thus f(z) is differentiable at z = z0 if and

only if lim
z→z0

f(z)− [f(z0) + L(z − z0)]

z − z0
= 0 for some L ∈ C.

We need one more minor modification before we identify with the real situation. Recall that for vector valued functions

in Rn, lim
x→x0

g(x) = 0 if and only if lim
x→x0

|g(x0)| = 0. Also, recall that
∣∣a
b

∣∣ = |a|
|b| (for a, b ∈ C and b ̸= 0). Thus f(z) is

differentiable at z = z0 if and only if there is some complex number L such that lim
z→z0

|f(z)− [f(z0) + L(z − z0)]|
|z − z0|

= 0

Now we identify C with R2 as follows: x + yi = (x, y). Thus L = p + qi = (p, q). For convenience we are going to write

elements of R2 (= C) as ordered pairs, (x, y), or column vectors,

[
x
y

]
, as suits our purposes. Thus x+ yi = (x, y) = [x y]T .

So at this point we can think of f : D → R2 where D is a subset of R2 = C. Thus f(x, y) = (u(x, y), v(x, y)) where
Re(f(x, y)) = u(x, y) and Im(f(x, y)) = v(x, y).

We need to unpack the term L(z−z0) and rewrite it in a real form. Notice that L(z−z0) = (p+qi)((x+yi)−(x0+y0i)) =

(p+qi)((x−x0)+(y−y0)i) = (p(x−x0)−q(y−y0))+(q(x−x0)+p(y−y0))i =

[
p(x− x0)− q(y − y0)
q(x− x0) + p(y − y0)

]
=

[
p −q
q p

] [
x− x0

y − y0

]
.

Therefore, f(z) being differentiable at z = z0 is equivalent to the existence of a real matrix (the Jacobian) J ∈ R2×2 where

J has the form J =

[
p −q
q p

]
and lim

(x,y)→(x0,y0)

∣∣f(x, y)− (
f(x0, y0) + J [x− x0 y − y0]

T
)∣∣

|(x, y)− (x0, y0)|
= 0.

Next, the numerator of the fraction in the limit is the length of

[
u(x, y)
v(x, y)

]
−
([

u(x0, y0)
v(x0, y0)

]
+

[
p −q
q p

] [
x− x0

y − y0

])
. We know

that lim
x→x0

|(g(x), h(x))| = 0 if and only if both lim
x→x0

|g(x)| = 0 and lim
x→x0

|h(x)| = 0 (limits of vectors are determined by limits

of their components). Therefore, f(z) is differentiable at z = z0 if and only if there is a complex number L = p + qi such
that both

lim
(x,y)→(x0,y0)

|u(x, y)− (u(x0, y0) + p(x− x0)− q(y − y0))|
|(x, y)− (x0, y0)|

= 0
and

lim
(x,y)→(x0,y0)

|v(x, y)− (v(x0, y0) + q(x− x0) + p(y − y0))|
|(x, y)− (x0, y0)|

= 0.

This says that not only are u(x, y) and v(x, y) differentiable at (x0, y0), but also ux(x0, y0) = p = vy(x0, y0) and uy(x0, y0) =
−q = −vx(x0, y0). Let’s sum up what we have found.

Theorem: Suppose f : D → C where D ⊆ C and z0 = (x0, y0) ∈ C = R2, z = x+ yi = (x, y), and f(z) = u(x, y) + v(x, y)i.
Then f(z) is differentiable (as a complex function) at z = z0 if and only if

� Both u(x, y) and v(x, y) are differentiable (as real scalar valued functions of two variables) at (x0, y0) and. . .

� The Cauchy-Riemann equations hold: ux(x0, y0) = vy(x0, y0) and −uy(x0, y0) = vx(x0, y0).

Moreover, if f(z) is differentiable at z = z0, we have that f ′(z0) = ux(x0, y0) + vx(x0, y0)i = −uy(x0, y0) + vx(x0, y0)i.

Recall that a (real) multivariate scalar valued function is differentiable if its partials exist and are continuous. Since (i) we
tend to work nearly exclusively with elementary functions, (ii) elementary functions have elementary functions as derivatives
(where they exist), and (iii) elementary functions are continuous wherever they are defined, we have that testing if partials
exist and are continuous to see if a function is differentiable works in nearly every case we run into. Therefore, an easy way
to establish that f(z) = u(x, y) + v(x, y)i is differentiable (as a complex function) is to compute ux, uy, vx, vy, make sure
these partials are continuous, and then check the Cauchy-Riemann equations: ux = vy and −uy = vx.
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By the way, if we are only interested in showing that the existence of f ′(z) implies the Cauchy-Riemann equations, this
can be done much more efficiently as follows: Suppose that f(z) is differentiable at z = z0. Then

f ′(z0) = lim
∆x+∆y i→0

(u(x0 +∆x, y0 +∆y) + v(x0 +∆x, y0 +∆y)i)− (u(x0, y0) + v(x0, y0)i)

∆x+∆y i
exists. Thus the limit exists along every (continuous) path through 0. In particular, we can approach along the imaginary
and real axes. Approaching along the real axis, ∆x → 0 and ∆y = 0 yields

f ′(z0) = lim
∆x→0

(u(x0 +∆x, y0) + v(x0 +∆x, y0)i)− (u(x0, y0) + v(x0, y0)i)

∆x

= lim
∆x→0

u(x0 +∆x, y0)− u(x0, y0)

∆x
+

(v(x0 +∆x, y0)− v(x0, y0))i

∆x
= ux(x0, y0) + vx(x0, y0)i

Approaching along the imaginary axis, ∆x = 0 and ∆y → 0 yields

f ′(z0) = lim
∆y→0

(u(x0, y0 +∆y) + v(x0, y0 +∆y)i)− (u(x0, y0) + v(x0, y0)i)

∆y i

= lim
∆y→0

u(x0, y0 +∆y)− u(x0, y0)

∆y i
+

(v(x0, y0 +∆y)− v(x0, y0))i

∆y i

= lim
∆y→0

−u(x0, y0 +∆y)− u(x0, y0)

∆y
i+

v(x0, y0 +∆y)− v(x0, y0)

∆y
= −uy(x0, y0)i+ vy(x0, y0)

Therefore, we have that f ′(z0) = ux(x0, y0) + vx(x0, y0)i = vy(x0, y0) − uy(x0, y0)i and so ux(x0, y0) = vy(x0, y0) and
−uy(x0, y0) = vx(x0, y0).

While this calculation is faster, it does not help determine when f is differentiable. Just because a multivariate limit
exists and matches along axes does not mean the (multivariate) limit exists.

Example: Consider the function f(x+ yi) = (x2 + y2) + (xy)i so u(x, y) = x2 + y2 and v(x, y) = xy.

We get that ux = 2x, uy = 2y, vx = y, and vy = x. Thus (since all of these partials are continuous) f is differentiable as a
function on R2. But the Cauchy-Riemann equations don’t hold (everywhere): ux = 2x ̸= x = vy (and −uy = −2y ̸= y = vx
as well). In fact, to make the Cauchy-Riemann equations hold we need 2x = x and −2y = y so x = y = 0. Since f is
(real) differentiable at 0 and the Cauchy-Riemann equations hold there, f is complex differentiable at 0. Moreover, since the
Cauchy-Riemann equations fail to hold everywhere else, z = 0 is the only place where f is (complex) differentiable. Also, we
have f ′(0) = ux(0, 0) + vx(0, 0)i = 0.

We could use the limit definition to figure all of this out, but this is much harder! I’ll illustrate by using the limit definition
to show f ′(0) = 0 and then (again using the limit definition) I’ll show that f ′(1 + 2i) does not exist.

f ′(0) = lim
∆z→0

f(0 + ∆z)− f(0)

∆z
= lim

∆z→0

((0 + ∆x)2 + (0 +∆y)2) + (0 + ∆x)(0 + ∆y)i− ((02 + 02) + (0 · 0)i)
∆x+ i∆y

= lim
∆z→0

(∆x)2 + (∆y)2 +∆x∆y i

∆x+∆y i
= lim

∆z→0

(∆x)2 + (∆y)2 +∆x∆y i

∆x+∆y i
· ∆x−∆y i

∆x−∆y i

= lim
∆z→0

((∆x)2 + (∆y)2)∆x+ (∆x∆y)∆y + ((∆x∆y)∆x− ((∆x)2 + (∆y)2)∆y)i

(∆x)2 + (∆y)2

= lim
∆z→0

((∆x)2 + (∆y)2)∆x+ (∆x∆y)∆y + ((∆x∆y)∆x− ((∆x)2 + (∆y)2)∆y)i

(∆x)2 + (∆y)2

= lim
∆z→0

(∆x)3 + 2(∆y)2∆x− (∆y)3i

(∆x)2 + (∆y)2
= lim

(r,θ)→(0,θ)

r3 cos3(θ) + 2r3 sin2(θ) cos(θ)− r3 sin3(θ)i

r2

= lim
(r,θ)→(0,θ)

r cos3(θ)+2r sin3(θ)− r sin3(θ)i = 0. Note: I shifted to polar coordinates (a Calculus 3 trick): ∆x = r cos(θ),

∆y = r sin(θ), so (∆x)2 + (∆y)2 = r2 and the origin is (0, θ) with θ arbitrary. Thus f ′(0) = 0.

Alternatively, consider f ′(1 + 2i).

f ′(1 + 2i) = lim
∆z→0

f((1 + 2i) + ∆z)− f(1 + 2i)

∆z
= lim

∆z→0

((1 + ∆x)2 + (2 +∆y)2) + (1 + ∆x)(2 + ∆y)i− (5 + 2i)

∆z

Approaching along ∆y = 0 (the real axis): lim
∆x→0

(1 + ∆x)2 + 22 + (1 +∆x)(2)i− (5 + 2i)

∆x
= lim

∆x→0

(∆x)2 + 2∆x+ 2∆x i

∆x

= lim
∆x→0

∆x + 2 + 2i = 2 + 2i and along ∆x = 0 (the imaginary axis): lim
∆y→0

12 + (2 +∆y)2 + 1(2 + ∆y)i− (5 + 2i)

∆y i
=

lim
∆y→0

(∆y)2 + 4∆y + 2∆y i

∆y i
= lim

∆y→0

∆y + 4 + 2i

i
= 2− 4i. Since 2+ 2i ̸= 2− 4i, the limit cannot exist. Thus f ′(1 + 2i) does

not exist.
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