Math 5160

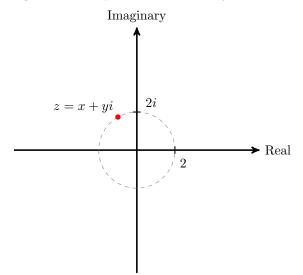
 $\#1 \ Basics$ More "Basic" Calculations

- (a) Compute e^z for $z = -\frac{i\pi}{3}, \frac{1}{2} \frac{i\pi}{4}$, and $-1 + \frac{i3\pi}{2}$.
- (b) Compute Log(4 + 4i) and Log(-10i). Then also compute log(4 + 4i) and log(-10i).
- (c) Compute $(-1)^i$ and indicate what the principal branch yields.
- (d) Compute $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{1+i}$ and indicate what the principal branch yields.
- (e) Compute $\sin(2i)$ and $\tan(2i)$.
- (f) Compute $\cosh(i\pi/3)$ and $\sinh(i\pi/3)$.

#2 Exponentially Difficult Graphs Sketch each of the following figures and its image under the exponential map $w = e^z$. Indicate images of vertical and horizontal lines in your sketch.

- (a) The vertical strip $0 < \operatorname{Re}(z) < 1$.
- (b) The horizontal strip $5\pi/3 < \text{Im}(z) < 8\pi/3$.
- (c) The rectangle $0 < x < 1, 0 < y < \pi/4.$
- (d) [Extra Credit] The disk $|z| \leq \pi/2$.
- (e) **[Extra Credit]** The disk $|z| < \pi$.
- (f) [Extra Credit] The disk $|z| \leq 3\pi/2$.

#3 Log Your Complaint Let z = x + yi be as shown below:



- (a) Is $Log(z^2) = 2Log(z)$? Explain why or why not.
- (b) In general, for which z do we have $Log(z^2) = 2Log(z)$? Justify your answer.
- (c) For $z \neq 0$, it is always that case that $e^{\log(z)} = z$ (and $e^{\log(z)} = z$). But obviously, " $\log(e^z) = z$ " cannot hold because log is multivalued. When is it the case that $\log(e^z) = z$?

#4 A Tangential Issue One can show that $\arctan(z) = \frac{i}{2}\log\left(\frac{1-iz}{1+iz}\right)$ when $z \neq \pm i$. The principal branch of inverse tangent is $\operatorname{Arctan}(z) = \frac{i}{2}\operatorname{Log}\left(\frac{1-iz}{1+iz}\right)$ when $z \neq \pm i$.

- (a) Derive the above formula for $\arctan(z)$.
- (b) Show that it is never the case that $\tan(z) = \pm i$. [Taking into account our formula for $\arctan(z)$, which is defined for all $z \neq \pm i$, and the fact that $\tan(\arctan(z)) = z$, we get that the range of $\tan(z)$ is $\mathbb{C} \{\pm i\}$.]