
(2)(2)
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> > 

(3)(3)

> > 

(1)(1)

> > 

Gram-Schmidt, QR Decompostion, and Coordinates.
restart;
with(LinearAlgebra):

Let's run the Gram-Schmidt orthogonalization process on the columns of the following matrix...

A := <<1,4,7>|<2,5,8>|<3,6,9>|<3,9,15>|<1,0,1>>;

A :=

1 2 3 3 1

4 5 6 9 0

7 8 9 15 1

The "GramSchmidt" command takes in a list of vectors. It doesn't like to take a matrix as an input, so I'll 
pull A apart.

GramSchmidt([seq(A[1..RowDimension(A),i],i=1..ColumnDimension(A))])
;

1

4

7
,

9
11

3
11

K
3
11

,

1
3

K
2
3

1
3

This gives unnormalized vectors. 

I'll toss in the "normalized" option and convert the list of vectors to a matrix (and call this matrix Q)...

Q := Matrix(GramSchmidt([seq(A[1..RowDimension(A),i],i=1..
ColumnDimension(A))], normalized));

Q :=

1
66

 66
3
11

 11
1
6

 6

2
33

 66
1
11

 11 K
1
3

 6

7
66

 66 K
1
11

 11
1
6

 6

Now let R be the matrix whose (i,j)-entry is the dot product of the i-th column of Q dotted with the j-th 
row of A. In other words, R = QTA.



(4)(4)

> > 

(6)(6)

> > 

(7)(7)

> > 

> > 

(5)(5)

> > 

(8)(8)

R := Transpose(Q).A;

R :=

66
13
11

 66
15
11

 66
24
11

 66
4
33

 66

0
3
11

 11
6
11

 11
3
11

 11
2
11

 11

0 0 0 0
1
3

 6

Notice that R is upper-triangular because of the iterative nature of the Gram-Schmidt process. 
Specifically, the j-th column of R is built from the j-th column of A which can be expressed as a linear 
combination of the first up to j-th vectors obtained from Gram-Schmidt. 

Finally because Q is orthogonal, its inverse is its transpose. Thus QR = QQTA = A.

Q.R;
1 2 3 3 1

4 5 6 9 0

7 8 9 15 1

The following vector belongs to the column space of A:

v := <<2,3,6>>;

v :=

2

3

6

This is revealed by row reduction...

ReducedRowEchelonForm(<A|v>);

1 0 K1 1 0
1
3

0 1 2 1 0
1
3

0 0 0 0 1 1

Notice that v is the 1/3 the first column of A plus 1/3 the second column plus the fifth column of A. This 
means that relative to the pivot column basis for A, the coordinates of v are...

colCoordsv := <<1/3,1/3,1>>;



> > 

> > 

(10)(10)

(4)(4)

> > 

(8)(8)

(9)(9)

colCoordsv :=

1
3

1
3

1

Recall that the columns of Q also form a basis for the column space of A. (Gram-Schmidt kicks out a 
basis - but not just any kind of basis - an orthogonal basis!)

Let's see that v belongs to the column space of A by seeing it expressed in this orthogonal basis....

ReducedRowEchelonForm(<Q|v>);

1 0 0
28
33

 66

0 1 0
3
11

 11

0 0 1
1
3

 6

Easier than row reduction, we can find coordinates by using dot products. Each coordinate of v (in this 
orthonormal basis) is nothing more than the dot product of v with a column of Q.

<<DotProduct(v,Q[1..3,1]), 
  DotProduct(v,Q[1..3,2]), 
  DotProduct(v,Q[1..3,3])>>; 

28
33

 66

3
11

 11

1
3

 6


