Let V be a vector space (over \mathbb{F}) such that $\dim(V) = n < \infty$. Let $T : V \to V$ be a linear transformation (since we are mapping from V to itself, we could refer to T as a linear endomorphism or a linear operator).

Definition: Let $\mathbf{v} \in V$ such that $\mathbf{v} \neq 0$ and $T(\mathbf{v}) = \lambda \mathbf{v}$. Then \mathbf{v} is an *eigenvector* for T with *eigenvalue* λ . Moreover, we say that $\lambda \in \mathbb{F}$ is an *eigenvalue* for T if T has an eigenvector with eigenvalue λ .

Note: **0** is not allowed to be an eigenvector. Otherwise since $T(\mathbf{0}) = \mathbf{0} = \lambda \mathbf{0}$ we would have that every scalar is an eigenvalue of T and **0** would have every scalar as its eigenvalue!

Definition: Let $f(t) = \det(tI - T)$. Then f(t) is called the *characteristic polynomial* of T.¹

Note: λ is an eigenvalue of $T \Leftrightarrow$ there exists an non-zero vector \mathbf{v} such that $T(\mathbf{v}) = \lambda \mathbf{v} \Leftrightarrow$ there exists a non-zero vector \mathbf{v} such that $(\lambda I - T)(\mathbf{v}) = \mathbf{0} \Leftrightarrow \operatorname{Ker}(\lambda I - T) \neq \{\mathbf{0}\} \Leftrightarrow \lambda I - T$ is not 1-1 $\Leftrightarrow \lambda I - T$ is not invertible $\Leftrightarrow \operatorname{det}(\lambda I - T) \neq 0$. We have just proved...

Theorem: λ is an eigenvalue of T if and only if λ is a root of the characteristic polynomial of T (that is $f(\lambda) = \det(\lambda I - T) = 0$).

Facts: Let f(t) be the characteristic polynomial of T. Then f(t) is a polynomial of degree n whose leading coefficient is 1 (i.e. f(t) is a *monic* polynomial). In addition, $f(0) = (-1)^n \det(T)$. Also, the coefficient of t^{n-1} in f(t) is $-\operatorname{tr}(T)$ (minus the trace of T).

Definition: Factor T's characteristic polynomial: $f(t) = (t - \lambda_1)^{m_1}(t - \lambda_2)^{m_2} \cdots (t - \lambda_k)^{m_k}$ (where $\lambda_i \neq \lambda_j$ for $i \neq j$ and $m_i > 0$). Then the roots of f(t) (i.e. the eigenvalues of T) are $\lambda_1, \ldots, \lambda_k$. We say that the *algebraic multiplicity* of λ_i is m_i (the number of factors $(t - \lambda_i)$ appearing in the characteristic polynomial). Notice that the sum of the algebraic multiplicities is n (the degree of the characteristic polynomial).

Definition: $E_{\lambda} = \{\mathbf{0}\} \cup \{\mathbf{v} \in V \mid \mathbf{v} \text{ is an eigenvector of } T \text{ with eigenvalue } \lambda\}$ That is

 $E_{\lambda} = \{ \mathbf{v} \in V | T(\mathbf{v}) = \lambda \mathbf{v} \} = \{ \mathbf{v} \in V | (\lambda I - T)(\mathbf{v}) = \mathbf{0} \} = \text{Ker}(\lambda I - T).$ If $E_{\lambda} \neq \{ \mathbf{0} \}$ (this happens exactly when λ is an eigenvalue), then we call E_{λ} an eigenspace of T. Notice that E_{λ} is a subspace of V (since it is the kernel of a linear transformation).

Definition: dim (E_{λ}) = dim $(\text{Ker}(\lambda I - T))$ = nullity $(\lambda I - T)$ is called the *geometric multiplicity* of λ . Notice that if λ is an eigenvalue then the eigenspace cannot be the zero subspace. Thus geometric multiplicities of eigenvalues are always at least 1.

Theorem: Let λ be an eigenvalue of T with algebraic multiplicity m and geometric multiplicity g. Then $1 \leq g \leq m$.

Theorem: Eigenvectors with different eigenvalues are linearly independent. Moreover, if S_i is a linearly independent set of eigenvectors with eigenvalue λ_i and $\lambda_i \neq \lambda_j$ for $i \neq j$, then $S_1 \cup S_2 \cup \cdots \cup S_k$ is a linearly independent set.

Definition: T is *diagonalizable* if there is a basis for V consisting of eigenvectors for T. Notice if β is such a basis, then $[T]_{\beta}$ is a diagonal matrix!

Corollary: T is diagonalizable (over \mathbb{F}) if and only if the eigenvalues of T all belong to \mathbb{F} (i.e. the characteristic polynomial completely factors over \mathbb{F}) and the geometric and algebraic multiplicities of each eigenvalue match.

¹This is the definition in Hoffman and Kunze. Freidberg, Insel, Spence define $g(t) = \det(T - tI)$ to be the characteristic polynomial. Notice that $f(t) = (-1)^n g(t)$ where $n = \dim(V)$.