Consider the following linear transformations:

$$S: P_2 \to \mathbb{R}^{2 \times 2} \quad \text{defined by} \quad S(ct^2 + bt + a) = \begin{bmatrix} a+b & b \\ c & a+c \end{bmatrix}$$
$$T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^2 \quad \text{defined by} \quad T\left(\begin{bmatrix} x & y \\ u & v \end{bmatrix}\right) = (x-y, u-v)$$

Notice that if we compose these maps we get $T \circ S : P_2 \to \mathbb{R}^2$ where

$$(T \circ S)(ct^2 + bt + a) = T(S(ct^2 + bt + a)) = T\left(\begin{bmatrix} a + b & b \\ c & a + c \end{bmatrix}\right) = (a + b - b, c - (a + c)) = (a, -a)$$

 $\beta = \{1, t, t^2\} \text{ for } P_2,$ Consider the standard bases: $\delta = \{e_1 = (1,0), e_2 = (0,1)\} \text{ for } \mathbb{R}^2,$

$$\gamma = \left\{ E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ for } \mathbb{R}^{2 \times 2}.$$

Let's find coordinate matrices for S, T, and $T \circ S$.

t's find coordinate matrices for
$$S, T,$$
 and $T \circ S$.

• $S(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1E_{11} + 0E_{12} + 0E_{21} + 1E_{22} \implies [S(1)]_{\gamma} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

$$S(t) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = 1E_{11} + 1E_{12} + 0E_{21} + 0E_{22} \implies [S(1)]_{\gamma} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$S(t^{2}) = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = 0E_{11} + 0E_{12} + 1E_{21} + 1E_{22} \implies [S(1)]_{\gamma} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
Therefore, $[S]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

•
$$T(E_{11}) = T\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} = (1,0) = 1e_1 + 0e_2 \implies [T(E_{11})]_{\delta} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$T(E_{12}) = T\begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix} = (-1,0) = -1e_1 + 0e_2 \implies [T(E_{12})]_{\delta} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$T(E_{21}) = T\begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \end{pmatrix} = (0,1) = 0e_1 + 1e_2 \implies [T(E_{21})]_{\delta} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$T(E_{22}) = T\begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = (0,-1) = 0e_1 - 1e_2 \implies [T(E_{22})]_{\delta} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
Therefore, $[T]_{\gamma}^{\delta} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$

• To find a coordinate matrix for $T \circ S$ we could do a direct computation like before...or we can use our work from the last two bullets:

$$[T \circ S]^{\delta}_{\beta} = [T]^{\delta}_{\gamma}[S]^{\gamma}_{\beta} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

[Or by direct computation: $(T \circ S)(1) = (1, -1) = 1e_1 - 1e_2$ and $(T \circ S)(t^2) = (T \circ S)(t) = (0, 0) = (0, 0)$ $0e_1 + 0e_2$ which gives us the same matrix (of course).

Let's find a basis for the Kernel and Range of S, T, and $T \circ S$. We know that if X is a linear transformation with corresponding matrix Y then N(Y) is a coordinate representation of Ker(X) and Col(Y) is a coordinate representation of Range(X).

• For
$$S$$
 we have...
$$[S]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus $N([S]_{\beta}^{\gamma}) = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$ and so $Ker(S) = \{0\}$ which means S is 1-1 and nullity(S) = 0.

Next, we see that every column of the coordinate matrix is a pivot column so that $\left\{ \begin{bmatrix} \bar{0} \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \bar{1} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \bar{0} \\ 1 \\ 1 \end{bmatrix} \right\}$

is a basis for $\operatorname{Col}([S]_{\beta}^{\gamma})$. These coordinate vectors correspond to the following set (which is a basis for Range(S)): $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right\}$ which is a basis for Range(S). Thus rank(S) = 3 (obviously S is not onto).

• For
$$T$$
 we have... $[T]_{\gamma}^{\delta} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$

Labeling variables x_1 , x_2 , x_3 , and x_4 , we have the equations: $x_1 - x_2 = 0$ and $x_3 - x_4 = 0$. x_2 and x_4 are free, so let $x_2 = s$ and $x_4 = t$ we get:

Thus,
$$\begin{cases} \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1\\ 1 \end{bmatrix} \end{cases}$$
 is a basis for $N([T]_{\gamma}^{\delta})$ which corresponds to:
$$\begin{cases} \begin{bmatrix} 1\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1\\ 1 \end{bmatrix} \end{cases}$$
 (a basis for $X_1 = x$ so that... $X_n = \begin{bmatrix} 1\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1\\ 1 \end{bmatrix} \end{cases}$ (a basis for $X_1 = x$ so that...

Ker(T)). Therefore, T is not 1-1 and nullity(T) = 2.

Next, the first and third columns of our coordinate matrix are pivot columns so that $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ is a basis for $\operatorname{Col}([T]_{\gamma}^{\delta})$. These coordinate vectors correspond to $\{(1,0),(0,1)\}$ (the standard basis for \mathbb{R}^2). Therefore, $\operatorname{Range}(T) = \mathbb{R}^2$ and $\operatorname{rank}(T) = 2$.

• Finally, for
$$T \circ S$$
 we have...
$$[T \circ S]_{\beta}^{\delta} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

If we label variables x_1 , x_2 , and x_3 , we see that the matrix says: $x_1 = 0$. Thus x_2 and x_3 are free,

$$x_1 = 0$$
 $x_2 = s$ thus...
 $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} s + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} t$

say $x_2 = s$ and $x_3 = t$ so we get: $x_1 = 0$ $x_2 = s$ thus... $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is a basis for $\mathbf{N}([T \circ S]^{\delta}_{\beta})$. These coordinate vectors correspond to: $\{t, t^2\}$

which is a basis for $Ker(T \circ S)$. From this we see that $T \circ S$ is not 1-1 and $nullity(T \circ S) = 2$.

Next, the first column of our coordinate matrix is the only pivot column so that $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ is a basis for $\operatorname{Col}([T \circ S]_{\beta}^{\delta})$. This coordinate vector corresponds to $\{(1,-1)\}$ which is a basis for Range $(T \circ S)$. We see from this that $T \circ S$ is not onto since $\operatorname{rank}(T \circ S) = 1$ (< 2).