
Linear Algebra Gram-Schmidt Orthogonalization

Definition: Let V be an inner product space. We say v,w ∈ V are orthogonal if 〈v,w〉 = 0. If S ⊆ V
and for all v,w ∈ S and v 6= w we have 〈v,w〉 = 0, then we say S is an orthogonal set. If u ∈ V
and ‖u‖ = 1, we say u is a unit vector. Notice that any non-zero vector v ∈ V can be normalized
(i.e. u = v/‖v‖) and turned into a unit vector. If S is an orthogonal set of unit vectors, S is called an
orthonormal set. It is not hard to show that an orthogonal set is linearly independent if and only if the
zero vector does not belong to the set. In particular, an orthonormal set is always linearly independent.

Coordinates and norms work particularly well in the context of orthogonal or orthonormal bases.

Suppose that β = {v1, . . . ,vn} is an orthogonal basis. Let v ∈ V and write v =
n∑

i=1
civi. Then we have

that 〈v,vi〉 =

〈
n∑

j=1
cjvj ,vi

〉
=

n∑
j=1

cj〈vj ,vi〉 = ci〈vi,vi〉 = ci‖vi‖2 where the sum collapses out since

the inner products for i 6= j yield zeros. So this means that v =
n∑

i=1

〈v,vi〉
‖vi‖2

vi. So coordinates can be

computed just using inner products! When our basis β is orthonormal (i.e. ‖vi‖ = 1) this is even nicer:

v =
n∑

i=1
〈v,vi〉vi. In this case the coordinates are the inner products with v.

Suppose that S = {w1, . . . ,wn} is orthogonal. Then

‖w1 + · · ·+ wn‖2 =

〈
n∑

i=1

wi,
n∑

j=1

wj

〉
=

n∑
i=1

n∑
j=1

〈vi,vj〉 =
n∑

i=1

〈wi,wi〉 = ‖w1‖2 + · · ·+ ‖wn‖2

where one of the sums drops out because 〈wi,wj〉 = 0 if i 6= j. This then implies that if β = {v1, . . . ,vn}

is an orthonormal basis, then ‖v‖2 =
∑n

i=1 ‖〈v,vi〉vi‖2 =
n∑

i=1
|〈v,vi〉|2 (i.e. the length of v is the sum of

the squares of the lengths of its coordinates.

Let α = {w1, . . . ,wn} be a linearly independent set. Recursively define a set β = {v1, . . . ,vn} as
follows:

v1 = w1 vn+1 = wn+1 − projv1
(wn+1)− · · · − −projvn

(wn+1)

where projv(w) =
〈w,v〉
‖v‖2

v is the orthogonal projection of w onto v. These sets then have the property

that span{w1, . . . ,wj} = span{v1, . . . ,vj} for each j = 1, . . . , n and β = {v1, . . . ,vn} is orthogonal (and
linearly independent). In particular, if α is a basis for V , then β is an orthogonal basis for V . Computing
the vi’s is called the Gram-Schmidt orthogonalization process. If we add in the additional step of
normalizing the elements of β, then we will have an orthonormal basis for V .

One consequence of the Gram-Schmidt algorithm is that every finite dimensional inner product space
has an orthonormal basis. Let β = {v1, . . . ,vn} be an orthonormal basis for V . Recall that ei =
(0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th position. Define a linear map ϕ that sends vi to ei for i = 1, . . . , n.
This map is an isomorphism (since we send a basis to a basis) and ϕ(〈v,w〉) = ϕ(v) •ϕ(w) (it preserves
inner products). Thus V ∼= Fn (isomorphic not only as vector spaces but also as inner product spaces).
So in a sense, the only inner product one can have on a finite dimensional inner product space is the dot
product (up to isomorphism).

It is worth mentioning that if you start with merely a spanning set, Gram-Schmidt will still produce
an orthogonal basis – if we toss out the zero vector anytime it appears (if a vector is linearly dependent
on previous vectors, once we subtract out projections, nothing will be left).
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Example: Consider S = {w1,w2,w3,w4} = {(1, 0, 0, i), (1+i, 1, 1, 1+i), (3+i, 1, 1, 1+3i), (0, 1+2i, 0, 1)}.

• v1 = w1 = (1, 0, 0, i)

• v2 = w2 −
w2 •v1

‖v1‖2
v1 = (1 + i, 1, 1, 1 + i)− 2

2
(1, 0, 0, i) = (i, 1, 1, 1)

• Notice that w3 −
w3 •v1

‖v1‖2
v1 −

w3 •v2

‖v2‖2
v2 = (3 + i, 1, 1, 1 + 3i)− 6

2
(1, 0, 0, i)− 4

4
(i, 1, 1, 1) = (0, 0, 0, 0).

This means that w3 ∈ span{v1,v2} = span{w1,w2}. So we can toss out w3 (and 0).

• v3 = w4−
w4 •v1

‖v1‖2
v1−

w4 •v2

‖v2‖2
v2 = (0, 1+2i, 0, 1)−−i

2
(1, 0, 0, i)−2 + 2i

4
(i, 1, 1, 1) =

1

2
(1, 1+3i,−1−i,−i)

So span(S) = spanβ where β =

{
(1, 0, 0, i), (i, 1, 1, 1),

1

2
(1, 1 + 3i,−1− i,−i)

}
is an orthogonal basis. We

could also normalize the vectors in β and get α =

{
1√
2

(1, 0, 0, i),
1

2
(i, 1, 1, 1),

1√
14

(1, 1 + 3i,−1− i,−i)
}

.

α is then an orthonormal basis for span(S).

Example: Consider the inner product 〈f, g〉 =

∫ 1

−1
f(x)g(x) dx defined on R[x]. If we run the Gram-

Schmidt algorithm (unnormalized) on {1, x, x2, . . . } and then rescale them so that ‖Pn(x)‖2 =
2

2n+ 1
,

we will get a collection of polynomials known as Legendre polynomials (we will denote them P0(x), P1(x),
etc.). In particular. . .

• f0(x) = 1. We then need 2(?)2 = (?)2
∫ 1
−1 12 dx = (?)2‖f0(x)‖2 =

2

2(0) + 1
, so ? = 1 and thus

P0(x) = f0(x) = 1.

• f1(x) = x− 〈x, 1〉
‖1‖2

1 = x−
∫ 1
−1 x · 1 dx∫ 1
−1 12 dx

1 = x− 0

2
1 = x. We then need

2

3
(?)2 = ‖(?)2f1(x)‖2 =

2

2(1) + 1

so ? = 1 and thus P1(x) = f1(x) = x.

• f2(x) = x2− 〈x
2, 1〉
‖1‖2

1− 〈x
2, x〉
‖x‖2

x = x2−
∫ 1
−1 x

2 · 1 dx∫ 1
−1 12 dx

1−
∫ 1
−1 x

2 · x dx∫ 1
−1 x

2 dx
x = x2− 2/3

2
1− 0

2/3
x = x2− 1

3
.

We then need
8

45
(?)2 = (?)2

∫ 1
−1(x

2 − 1/3)2 dx = ‖? f2(x)‖2 =
2

2(2) + 1
=

2

5
so (?)2 = 9/4 and thus

? = 3/2. Thus P2(x) = (3/2)f2(x) =
3

2
x2 − 1

2
.

2


