Homework #1

Math 5230

#1 **RREF** First, (1) use Gaussian elimination (as defined on the handout) to compute the RREF of A. Then, (2) give a vector version of the general solution of $A\mathbf{x} = \mathbf{0}$. Finally, (3) suppose $A = [C : \mathbf{b}]$ (C is all but the last column and **b** is the last column of A). Give a vector form of the general solution of $C\mathbf{x} = \mathbf{b}$.

		1	-2	0	2	3		0	1	3	1
(a)	A =	2	-4	1	5	4	(b) $A =$	2	0	4	2
		-1	2	1	-1	-5		1	-1	-1	3

#2 PLU and Partial Pivoting First, (1) use partial pivoting to row reduce A (to REF not RREF), and compute a PLU decomposition for A. Then (2) use this decomposition to solve $A\mathbf{x} = \mathbf{b}$.

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 1 \\ 4 & 1 & 0 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 3 \end{bmatrix}$

- #3 Matrix Mechanics First, (1) give a formula for a matrix which performs the given list of row operations. For example: Swapping rows 1 and 2 is $E = I - E_{11} - E_{22} + E_{12} + E_{21}$. Then, (2) give a formula for its inverse (for my example $E^{-1} = E = I - E_{11} - E_{22} + E_{12} + E_{21}$). Next, (3) what happens if you multiply a matrix by your *E* on the right? (my example swaps columns 1 and 2). Finally, (4) give a concrete example to show off this behavior (for my example I could take some 2×2 matrix and show how *E* swaps its rows and columns when multiplying on the left or right).
 - (a) Find a matrix E which swaps rows 3 and 4 and then scales row 2 by 5.
 - (b) Find a matrix E which swaps rows 1 and 4 and then adds -2 times row 2 to row 3.
- #4 Matrix Mechanics II: Matrices Arise Let $B = I E_{11} + 3E_{22} E_{33} E_{99} + E_{39} + E_{93}$. What does BA do to A? What does AB do to A? (Assume that A and B are appropriately sized.¹)
- #5 Matrix Mechanics III: Revenge of the Matrices Let $\mathbb{R}^{n \times n}$ be the collection of all square $n \times n$ matrices with real entries. We say that $A \in \mathbb{R}^{n \times n}$ is in the **center** of $\mathbb{R}^{n \times n}$ if AB = BA for all $B \in \mathbb{R}^{n \times n}$. In other words, central matrices commute with all matrices of the same size.

Show that the A is in the center if and only if A = cI for some $c \in \mathbb{R}$ (i.e. the central matrices are exactly the scalar multiples of the identity). Please do this using E_{ij} 's.

¹In this day and age is it ok to talk about "appropriately sized" matrices? Shouldn't we accept a matrix just the way it is no matter how big or small it is? I think Dr. Cook might be encouraging bias. I should probably fill out a form.