Homework #3

#1 A 2 × 2 Determinant Consider $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$. Find det(A) in the following ways...

- (a) Use the usual formula.
- (b) Use Gaussian elimination (i.e. the algorithm from class just use a forward pass).
- (c) Compute only using the facts that the determinant is (1) alternating, (2) bilinear (bi = 2 for a 2×2 matrix), and (3) sends the identity matrix to 1. [Note: multilinear and alternating imply skew. You may use the skew property (switching rows/cols flips the sign) as well.]

#2 A 3×3 Determinant Consider $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 4 \\ 2 & 1 & 2 \end{bmatrix}$. Find det(A) in the following ways...

- (a) Use the 3×3 trick.
- (b) Expand along the first row.
- (c) Expand along the second column.
- (d) Use Gaussian elimination (i.e. the algorithm from class just use a forward pass)
- (e) The same as part (d) except also use full pivoting.
- (f) Find the inverse of this matrix using the classical adjoint formula.

#4 Reverse Engineering As Seen in Class!

- (a) Create a 5×5 matrix that looks intimidating (make it interesting) even though its determinant is easy to compute when using the right row and column expansions. [Also, compute the determinant of your example using those expansions.]
- (b) Create a 4×4 matrix whose entries are all non-zero integers and whose inverse is a matrix whose entries are all integers (zero is ok in the inverse).
- #5 Linearly Dependent Gives Zero We know that a set of vectors is linearly dependent if and only if at least one vector can be written as a linear combination of the other vectors in that set. In fact from the linear correspondence property (and Gaussian elimination) we know that if some set $S = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ is linearly dependent then there is an index j and constants c_1, \ldots, c_{j-1} such that $\mathbf{v}_j = c_1 \mathbf{v}_1 + \cdots + c_{j-1} \mathbf{v}_{j-1}$ (j would be correspond to some non-pivot column).

Let $A = [\mathbf{a}_1 | \mathbf{a}_2 | \cdots | \mathbf{a}_n]$ (here \mathbf{a}_i is the *i*th column of A). Show that $\det(A) = 0$ if the columns of A are linearly dependent. Do this only using facts about the effects of column operations on determinants.