Homework #5

Due: Mon., Oct. 10th, 2016

<u>Notation:</u> V is a vector space over a field \mathbb{F} . Do not assume V is finite dimensional (unless told otherwise). Let W_1 and W_2 be subspaces of V.

- #1 Vector Space Definition Using the definition and that's all.
 - (a) In horrifying detail (go through all of the axioms), show that $\mathbb{R}^2 = \{(a,b) \mid a,b \in \mathbb{R}\}$ is a vector space over \mathbb{R} .
 - (b) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. Prove that $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$ implies that $\mathbf{v} = \mathbf{w}$. Do this *only using axioms*. Cite the axioms being used.
- #2 Easy Subspace Show that $W = \{(x,y) \in \mathbb{R}^2 \mid x+2y=0\}$ is a subspace of \mathbb{R}^2 . Then explain why $B = \{(x,y) \in \mathbb{R}^2 \mid x+2y=3\}$ is not a subspace.
- #3 Subspace Recall that a function $f: \mathbb{R} \to \mathbb{R}$ is called **even** if f(-x) = f(x). A function is called **odd** if f(-x) = -f(x). Recall that $V = \mathbb{R}^{\mathbb{R}}$ is the vector space of all functions from the reals to the reals.
 - (a) Let E be the set of all even functions in $\mathbb{R}^{\mathbb{R}}$. Show that E is a subspace.
 - (b) Let O be the set of all odd functions in $\mathbb{R}^{\mathbb{R}}$. Show that O is a subspace.
 - (c) Notice that for any $f \in \mathbb{R}^{\mathbb{R}}$, $g(x) = \frac{f(x) + f(-x)}{2}$ is even and $h(x) = \frac{f(x) f(-x)}{2}$ is odd. Prove that $\mathbb{R}^{\mathbb{R}} = E \oplus O$. Demonstrate how $f(x) = x^3 5x^2 + \cos(x) + 4\sin(x) 12$ decomposes.

"Fun" Side Note: When we decompose a function into an even function plus an odd function, we call these parts it's even and odd parts. The even and odd parts of the exponential function, e^x , are called $\cosh(x)$ and $\sinh(x)$ (the hyperbolic cosine and sine functions).

- #4 Unions Don't Work Show that $W_1 \cup W_2$ is a subspace if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- #5 Linear Independence and Spanning Let V be a vector space over $\mathbb{F} = \mathbb{Q}$ (the rational numbers) with basis $\beta = \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ (distinct vectors).
 - (a) Prove that $S = \{\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{w} + \mathbf{u}\}$ is linearly independent (using the definition of independence).
 - (b) Prove that $T = \{\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}, \mathbf{w}\}$ spans V (using the definition of span).
 - (c) Consider $S \cup T$ and $S \cap T$. Decide whether each set is linearly independent, spans V, both spans and is linearly independent, or neither. Give proof of each assertion.
- #6 Dimension For convenience, let's assume V is finite dimensional. Note that $W_1+W_2=\{u+v\mid u\in W_1\text{ and }v\in W_2\}$. Also, recall that $V=W_1\oplus W_2$ if $V=W_1+W_2$ and $W_1\cap W_2=\{\mathbf{0}\}$.
 - (a) Prove that $\dim(W_1 \cap W_2) \leq \min\{\dim(W_1), \dim(W_2)\}.$
 - (b) Prove that $\dim(W_1 + W_2) \ge \max\{\dim(W_1), \dim(W_2)\}.$
 - (c) If $V = W_1 \oplus W_2$, what is dim(V)? Justify your answer.

As a general bit of advice for problems like this, assume (without loss of generality) that $\dim(W_1) = m \le \dim(W_2) = n$ so that (for example) the minimum of the two dimensions is m and the maximum is n.