Math 5230

Homework #7

- #1 Linearity Let $T: V \to W$ and $S: W \to U$ be linear transformations between vector spaces V, W, and U (over some field \mathbb{F}).
 - (a) Prove that $S \circ T$ is linear.
 - (b) Assume that T is a bijection. Show that T^{-1} is linear (i.e. if T is an isomorphism, then so is T^{-1}).

#2 Combating Coordinate Change Let $T: P_2 \to \mathbb{R}^{2 \times 2}$ and $S: \mathbb{R}^{2 \times 2} \to \mathbb{R}^2$ be defined by

$$T(ax^2 + bx + c) = \begin{bmatrix} a+b+c & 2a-b+5c \\ b-c & a+2b \end{bmatrix} \quad \text{and} \quad S\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = (a+b-c, b+c+d).$$

Let $\alpha = \{1, x, x^2\}$, $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$, and $\gamma = \{(1, 0), (0, 1)\}$ be the standard bases for P_2 , $\mathbb{R}^{2 \times 2}$, and \mathbb{R}^2 respectively.

- (a) Show S and T are linear. [So by the first problem, we have that $S \circ T$ is linear too.]
- (b) Find $[T]^{\beta}_{\alpha}$, $[S]^{\gamma}_{\beta}$, and $[S \circ T]^{\gamma}_{\alpha}$.
- (c) Let $\delta = \{x, 1 + x, x + x^2\}$. Explain why δ is a basis for P_2 and then find the change of basis matrices $[I]^{\alpha}_{\delta}$ and $[I]^{\delta}_{\alpha}$.
- (d) Let $\kappa = \{(1,2), (3,4)\}$. Explain why κ is a basis for \mathbb{R}^2 and then find the change of basis matrices $[I]_{\kappa}^{\gamma}$ and $[I]_{\gamma}^{\kappa}$.
- (e) Compute $[S \circ T]^{\kappa}_{\delta}$.

#3 Dual Basis Let $\alpha = \{(1,0,0), (1,-1,0), (2,0,1)\}.$

- (a) Explain why α is a basis for \mathbb{R}^3 .
- (b) Find α^* for $(\mathbb{R}^3)^*$ (i.e. find the basis dual to α).
- (c) Explain why $f \in (\mathbb{R}^3)^*$ where f(x, y, z) = 3x + 2y + z. Then write f as a linear combination of α^* elements (i.e. find its α^* -coordinates).
- #4 Dual Proof Let W be a subspace of a vector space V (over a field \mathbb{F}). We say that $f \in V^*$ annihilates W if $f(\mathbf{w}) = 0$ for all $\mathbf{w} \in W$. Let $A(W) = \{f \in V^* \mid f(\mathbf{w}) = 0 \text{ for all } \mathbf{w} \in W\}$ (the collection of all linear functionals which annihilate W). A(W) is called the **annihilator** of W.
 - (a) Prove that A(W) is a subspace of V^* .
 - (b) Suppose that $V = U \oplus W$ for some subspaces U and W. Show that $V^* = A(W) \oplus A(U)$.
 - (c) Let $T: V \to V$ be a linear operator and suppose that $T(W) \subseteq W$ for some subspace W (i.e. W is a T-invariant subspace). Show that $T^t(A(W)) \subseteq A(W)$ (i.e. A(W) is T^t -invariant).