
Linear Algebra Partial Pivoting & PLU-Decomposition

Gauss-Jordan elimination is the work horse of linear algebra. While it gets the job done in theory, it
is not stable numerically. If you are working with approximate coefficients in your linear system, regular
Gauss-Jordan elimination can significantly amplify error. To combat this we have the methods of partial
pivoting and full pivoting.

Partial pivoting is a minor modification of Gauss-Jordan elimination. With regular elimination, after
locating a pivot position, you merely swap rows so there is something non-zero in the pivot position. Partial
pivoting demands that you always swap the largest (in magnitude) possible entry into the pivot position.

Why does this help? Well, in the forward pass, error is created when we add a multiple of a row to
another row. The multiple we use can magnify whatever round off error is already there. By choosing the
largest available pivot, we guarantee that our multiples always have magnitudes of 1 or less. This means
we limit the propagation of error (possibly significantly).

However, this does not always fix the instability issue. In theory, there are systems that (when solved
with partial pivoting) small perturbations of inputs yields large perturbations of outputs. On the other
hand, the technique of full pivoting is stable. Full pivoting means you swap rows and columns if necessary
to get a pivot of largest magnitude. While full pivoting is not hard to implement, these column swaps are
quite annoying. This amounts to renaming variables. So when you finish row reduction, you then have to
track down how your variables where permuted. In many circumstances, partial pivoting is good enough.

Example:
x + 4y − 2z = 3

−x + 3y + z = 8
2x + 3z = 11

. We have Ax = b where A =

 1 4 −2
−1 3 1
2 0 3

 and b =

 3
8
11

.

We will solve this system by doing a partial pivoting forward pass and back substitution.

[A : b] =

 1 4 −2 : 3
−1 3 1 : 8
2 0 3 : 11

 R1↔R3˜
 2 0 3 : 11
−1 3 1 : 8
1 4 −2 : 3

 1
2
R1+R2˜ − 1

2
R1+R3˜

2 0 3 : 11

0 3 5
2 : 27

2

0 4 −7
2 : −5

2


R2↔R3˜

2 0 3 : 11

0 4 −7
2 : −5

2

0 3 5
2 : 27

2

 − 3
4
R2+R3˜

2 0 3 : 11

0 4 −7
2 : −5

2

0 0 41
8 : 123

8


Notice our row swaps to make sure we had pivots of maximal magnitudes. This completes our partial

pivoting forward pass. Now we back substitute to solve.
The last row of our augmented matrix says 41

8 z = 123
8 and so z = 3. The second row says 4y− 7

2z = −5
2

and so y = 1
4

(
−5

2 + 7
2(3)

)
= 2. Finally, the top row says 2x + 3y = 11 and so x = 1

2 (11 − 3(3)) = 1.
Therefore, the (unique) solution is x = 1, y = 2, and z = 3. Of course, it would have been much easier

to just use standard row reduction!

Next, we will compute a PLU-decomposition of A using partial pivoting. Then we will use this decom-
position to once again solve our system. To compute a PLU-decomposition we need to complete a forward
pass on A. This time we will keep track of the type III operation multiples that show up. These will be
denoted by red entries in parentheses. In particular, if we perform “aRi +Rj”, then we will put “(−a)” in
the j-th row directly below our pivot (i.e., the entry that was being wiped out by this operation).

Because of the way that row swaps and these type III operations interact, we want to move these entries
along with the others when we swap rows. Following this procedure will leave us with entries that go below
the diagonal in our lower triangular matrix L. In other words, we will be able to read off L and U at the

1



end of the forward pass. For the permutation piece, it turns out our permutations could have been done
up front, so we end up with (Permute)A = LU . Thus the permutations done actually build P−1. We have
P−1A = LU so that A = PLU . Therefore, the P we’re looking for is built by undoing the swaps done in
the forward pass (i.e., take the identity matrix I and then do the swaps from last to first – this gives us
our P ).

A =

 1 4 −2
−1 3 1
2 0 3

 R1↔R3˜
 2 0 3
−1 3 1
1 4 −2

 1
2
R1+R2˜

 2 0 3

(−1
2) 3 5

2

1 4 −2

 − 1
2
R1+R3˜

 2 0 3

(−1
2) 3 5

2

(12) 4 −7
2


R2↔R3˜

 2 0 3

(12) 4 −7
2

(−1
2) 3 5

2

 − 3
4
R2+R3˜

 2 0 3

(12) 4 −7
2

(−1
2) (34) 41

8



I
R1↔R3˜

0 0 1
0 1 0
1 0 0

 R2↔R3˜
0 0 1

1 0 0
0 1 0

 = P−1 I
R2↔R3˜

1 0 0
0 0 1
0 1 0

 R1↔R3˜
0 1 0

0 0 1
1 0 0

 = P

Therefore, A =

 1 4 −2
−1 3 1
2 0 3

 = PLU =

0 1 0
0 0 1
1 0 0


︸ ︷︷ ︸

P

 1 0 0
1
2 1 0

−1
2

3
4 1


︸ ︷︷ ︸

L

2 0 3

0 4 −7
2

0 0 41
8


︸ ︷︷ ︸

U
To use this decomposition to solve Ax = b we first take care of the permutation: PLUx = b so

LUx = P−1b. In other words, we need to permute b according to the swaps done in our forward pass
(from first to last). Alternatively, we could just multiply by P−1 (as computed above).

b =

 3
8
11

 R1↔R3˜
11

8
3

 R2↔R3˜
11

3
8

 = c

Next, let Ux = y so that LUx = P−1b is Ly = c. We solve this system by forward substitution.
Notice that the first row of [L : c] would tell us that y1 = 11. The next row tells us 1

2y1 + y2 = 3 so that
y2 = 3 − 1

2(11) = −5
2 . The final row says −1

2y1 + 3
4y2 + y3 = 8 so that y3 = 8 + 1

2(11) − 3
4(−5

2) = 123
8 so

y =
[
11 − 5

2
123
8

]T
.

Finally, we solve Ux = y using forward substitution. The last row of [U : y] would tell us that
41
8 x3 = 123

8 so x3 = 3. The middle row tells us that 4x2 − 7
2x3 = −5

2 so that x2 = 1
4

(
−5

2 + 7
2(3)

)
= 2. Last

of all, the first row says 2x1 + 3x3 = 11 so that x1 = 1
2(11− 3(3)) = 1. Therefore, once again, we find that

x = 1, y = 2, and z = 3 is the unique solution of our system.

Of course all of this is a lot of work to solve a fairly simple system. So why? We already discussed
that partial pivoting helps with numerical issues. The PLU-decomposition is helpful if are solving multiple
systems with the same coefficient matrix A. If so, you find A = PLU once and then use it over and over
again. With this decomposition in hand, you simply (1) permute the entries of b, (2) solve a lower triangular
system with forward substitution, and (3) solve an upper triangular system with back substitution. These
3 steps can be done very quickly (even for extremely large systems) and they won’t introduce much new
round off error (most of that is generated when computing the PLU-decomposition).

2


