Due: Wed., Sept. 4th, 2024

#1 Row, Column, Null Let $A = \begin{bmatrix} 1 & 2 & 0 & 3 & 2 & -1 \\ 2 & 4 & 3 & 0 & 0 & 2 \\ -1 & -2 & 1 & -5 & 1 & -2 \\ 3 & 6 & -2 & 13 & 0 & 3 \end{bmatrix}$

Find a basis for (i) Row(A), (ii) Col(A), and (iii) Null(A).

#2 Linear Correspondence Fill in the missing entries. A is a matrix with real entries and R is its RREF.

(a)
$$A = \begin{bmatrix} 0 & ? & 1 & ? & ? & 3 & ? & ? \\ 1 & ? & -1 & ? & ? & 2 & ? & ? \\ 2 & ? & 1 & ? & ? & 1 & ? & ? \\ 1 & ? & -1 & ? & ? & 2 & ? & ? \end{bmatrix}$$

$$\stackrel{\text{RREF}}{\sim} R = \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 3 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(c) \ \ A = \begin{bmatrix} 2 & ? & ? & 4 & ? & 1 \\ 1 & ? & ? & 0 & ? & 2 \\ 1 & ? & ? & 4 & ? & 1 \end{bmatrix} \quad \overset{\text{RREF}}{\sim} \quad R = \begin{bmatrix} ? & 2 & ? & 2 & 1 & ? \\ ? & 0 & ? & 2 & 3 & ? \\ ? & 0 & ? & 0 & 0 & ? \end{bmatrix}$$

#3 Coordinates, Spanning, Bases Let $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ be the standard basis for $\mathbb{R}^{2\times 2}$.

[Note: As discussed in class, even though β is a set, treat it like a list and maintain the order as shown above.]

For example, the
$$\beta$$
-coordinates of the matrix $\begin{bmatrix} 2 & 0 \\ -1 & 5 \end{bmatrix}$ are $\begin{bmatrix} \begin{bmatrix} 2 & 0 \\ -1 & 5 \end{bmatrix} \end{bmatrix}_{\beta} = \begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}$.

Let
$$A_1 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, $A_3 = \begin{bmatrix} -1 & -2 \\ -1 & 2 \end{bmatrix}$, $A_4 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and $A_5 = \begin{bmatrix} 1 & 3 \\ 6 & 10 \end{bmatrix}$.

- (a) Does A_4 belong to Span $\{A_1, A_2, A_3\}$?
- (b) Let $S = \{A_1, A_2, A_3, A_4\}$ and $W = \operatorname{Span}(S)$. Find a subset of S which forms a basis for W.
- (c) Using your basis found in part (b), find coordinates for A_1, \ldots, A_5 .
- (d) Extend $\{A_5\}$ to a basis for W.