Notation: V is a vector space over a field \mathbb{F} . Do not assume V is finite dimensional (unless told otherwise).

#1 Vector Space Definition Building up from nothing.

First, here are several examples of axiom level proofs:

- The zero vector is unique: Suppose 0 and 0' are zero vectors. Then 0' = 0 + 0' = 0 where the first equality follows from the fact the adding the zero vector 0 does nothing and the second equality follows from the fact that adding the zero vector 0' also does nothing.
- Additive inverses are unique: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. Suppose that \mathbf{u} is a left and \mathbf{w} is a right additive inverse of \mathbf{v} . Then $\mathbf{w} = \mathbf{0} + \mathbf{w} = (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) = \mathbf{u} + \mathbf{0} = \mathbf{u}$ where we used the definition of the zero vector, the definitions of left and right additive inverses, and associativity of vector addition to get our equalities.
- The scalar zero yields zero: Let $\mathbf{v} \in V$. Then $0\mathbf{v} = (0+0)\mathbf{v} = 0\mathbf{v} + 0\mathbf{v}$ since 0+0=0 (the scalar zero is the additive identity in \mathbb{F}). We also used the fact that we can distribute scalar multiplication. Now add $-(0\mathbf{v})$ to both sides: $-(0\mathbf{v}) + 0\mathbf{v} = -(0\mathbf{v}) + (0\mathbf{v} + 0\mathbf{v})$. Thus $\mathbf{0} = (-(0\mathbf{v}) + 0\mathbf{v}) + 0\mathbf{v} = \mathbf{0} + 0\mathbf{v} = 0\mathbf{v}$ where we used the definition of additive inverses, associativity, and additive identity properties. Therefore, $0\mathbf{v} = \mathbf{0}$.
- Negative one negates: Let $\mathbf{v} \in V$. Then $\mathbf{0} = 0\mathbf{v} = (1-1)\mathbf{v} = 1\mathbf{v} + (-1)\mathbf{v} = \mathbf{v} + (-1)\mathbf{v}$ where we have used our result immediately above, the definition of -1, distribution, and the axiom that scaling by 1 does nothing. Now add $-\mathbf{v}$ to both side: $-\mathbf{v} + \mathbf{0} = -\mathbf{v} + (\mathbf{v} + (-1)\mathbf{v})$. Using the additive identity property of the zero vector and associativity we get: $-\mathbf{v} = (-\mathbf{v} + \mathbf{v}) + (-1)\mathbf{v} = \mathbf{0} + (-1)\mathbf{v}$. Therefore, $(-1)\mathbf{v} = -\mathbf{v}$.
- (a) In horrifying detail (go through all of the axioms), show $\mathbb{R}^2 = \{(a,b) \mid a,b \in \mathbb{R}\}$ is a vector space over \mathbb{R} .
- (b) [Cancellation:] Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. Prove that $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$ implies that $\mathbf{v} = \mathbf{w}$.

Do this *only using axioms*. Cite the axioms being used.

(c) [Scaling zero does nothing:] Let $c \in \mathbb{F}$ and $\mathbf{0}$ be the zero vector in V. Prove $c \mathbf{0} = \mathbf{0}$.

Carefully explain each step.

#2 Easy Subspace Workin' in \mathbb{R}^2 .

- (a) Show $W = \{(x, y) \in \mathbb{R}^2 \mid x + 2y = 0\}$ is a subspace of \mathbb{R}^2 . [Use the subspace test please.]
- (b) Explain why $B = \{(x, y) \in \mathbb{R}^2 \mid x + 2y = 3\}$ is not a subspace of \mathbb{R}^2 .
- (c) Show $U = \{(a b, 2a + b) \mid a, b \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 . [Use the subspace test please.]

#3 Trickier Subspace The collection of all functions from a field to itself,

$$V = \mathbb{F}^{\mathbb{F}} = \{ f \mid f : \mathbb{F} \to \mathbb{F} \} \text{ is a vector space (over } \mathbb{F}).$$

Let $f \in V$. We say that f is **even** if f(-x) = f(x) for all $x \in \mathbb{F}$. Likewise, we say that f is **odd** if f(-x) = -f(x). For example, $f(x) = x^2$ is even whereas $g(x) = x^3$ is odd. On the other hand, most functions we encounter are neither. For example: $h(x) = x^2 + x^3$ is neither even nor odd (working in characteristics other than 2).

- (a) Let $E = \{ f \in V \mid f \text{ is even } \}$. Show E is a subspace of V.
- (b) Let $O = \{ f \in V \mid f \text{ is odd } \}$. Show O is a subspace of V.
- (c) Suppose that \mathbb{F} is a field such that $\operatorname{char}(\mathbb{F}) \neq 2$ (i.e., 2^{-1} exists).

For any $f \in V$, let $f_e(x) = \frac{f(x) + f(-x)}{2}$ and $f_o(x) = \frac{f(x) - f(-x)}{2}$ define functions f_e and f_o in V. Note: $f_e(-x) = \frac{f(-x) + f(x)}{2} = f_e(x)$ and $f_o(-x) = \frac{f(-x) - f(x)}{2} = -\frac{f(x) - f(-x)}{2} = -f_o(x)$.

Show that $V = E \oplus O$. So every function can be uniquely decomposed into an even plus an odd part.¹

(d) Working over $\mathbb{F} = \mathbb{R}$, how does $f(x) = x^3 - 5x^2 + \cos(x) + 4\sin(x) - 12$ decompose?

Side Notes:

- In characteristic 2, x = -x so -f(x) = f(x) = f(-x). This means V = E = O.
- When working over the reals, the even part of e^x is $\cosh(x) = \frac{e^x + e^{-x}}{2}$ and the odd part is $\sinh(x) = \frac{e^x e^{-x}}{2}$ (these are the hyperbolic sine and cosine functions).

#4 Unions Don't Work Let W_1 and W_2 be subspaces of V.

Show $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

¹Showing V is a direct sum of E and O requires two things. First, you need to show every $f \in V$ can be written as f = g + h where $g \in E$ and $h \in O$ (i.e., V is a sum of E and O). Then, you need to show that $E \cap O = \{0\}$ where 0 here is the zero function: O(x) = 0 for all $x \in \mathbb{F}$ (i.e., the sum is direct).