Homework #8

Due: Wed., Oct. 30th, 2024

#1 Ultimately a Based Problem Let $T: V \to W$ be a linear transformation between vector spaces V and W (both over the field \mathbb{F}).

Let S be a linearly independent subset of V and let T be one-to-one. Show T(S) is linearly independent.

Note: We have $T\left(\sum_{i=1}^{\ell} c_i \mathbf{v}_i\right) = \sum_{i=1}^{\ell} c_i T(\mathbf{v}_i)$ for any $c_1, \dots, c_{\ell} \in \mathbb{F}$ and $\mathbf{v}_1, \dots, \mathbf{v}_{\ell} \in V$. Thus the image of any linear combination of elements of V is a linear combination of the images of those elements. Therefore, given any subset $S \subseteq V$, we have $T(\operatorname{span}(S)) = \operatorname{span}(T(S))$. Consequently, if S spans V, then T(S) spans T(V). Thus if T is onto, then a spanning set for V maps to a spanning set for W.

Putting this together with the above homework problem, we get that sisomorphisms map bases to bases

#2 Concrete Quotient Let $W = \left\{ \begin{bmatrix} a+b+4c & 2a+b+3c \\ 3a+b+2c & 4a+b+c \end{bmatrix} \middle| a,b,c \in \mathbb{R} \right\}$. Give a quick justification for why W is a subspace of $\mathbb{R}^{2\times 2}$. Then find a basis for W and a basis for W.

#3 Abstract Quotient Let U and W be subspaces of some vector space V (over a field \mathbb{F}).

(a) Prove the Second (or Diamond) Isomorphism Theorem: $U \cap W \cong U + W \cup U$.

Hint: Consider $\varphi: W \to U + W$ defined by $\varphi(\mathbf{w}) = \mathbf{w} + U$ and apply the First Isomorphism Theorem.

- (b) Give a relationship among the dimensions of U, W, U + W, and $U \cap W$ determined by the above theorem
- (c) What can we say in the special case when $U + W = U \oplus W$?

#4 Concrete Dual Let $\alpha = \{(1,0,0), (1,-1,0), (2,0,1)\}.$

- (a) Explain why α is a basis for \mathbb{R}^3 . Then find α^* for $(\mathbb{R}^3)^*$ (i.e. find the basis dual to α).
- (b) Explain why $f \in (\mathbb{R}^3)^*$ where f(x, y, z) = 3x + 2y + z. Then write f as a linear combination of α^* elements (i.e., find its α^* -coordinates).