Name: _____

Be sure to show your work!

1. (25 points) "Fun" with Truth Tables!

(a) Fill out an abbreviated truth table for the following statement: $(a \lor \neg a) \to (b \land \neg b)$. Circle your concluding truth values and the correct answer:

This statement is a Contingency / Contradiction / Tautology.

(b) Show that $\neg a \lor \neg b$ and $\neg (a \land b)$ are logically equivalent.

(c) Consider the following statement: $\neg a, a \rightarrow b \vdash \neg b$. Circle the correct answers.

IS / IS NOT a theorem of L by the Soundness / Completeness theorem.

2. (25 points) System L

(a) I have provided a proof of Lemma L6 below – except the justifications are missing.

Fill in the justifications and please be specific!

 $\boxed{\textbf{Lemma L6}} \quad A \to (B \to C), B \vdash_L A \to C$

1: $A \to (B \to C)$

 $2{:}\ B$

 $A \rightarrow B$

4: $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$

5: $(A \to B) \to (A \to C)$

6: $A \rightarrow C$

(b) Prove Lemma L10: $\vdash_L (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$. [You may use the deduction theorem if you wish.] Hint/Suggestion: Axiom 3 should be helpful.

3. ((25)	points'	Models.	Variables,	Free for	
•		POILION	, modern,	v diritionico,	1100 101	

- (a) Consider the formula: $\forall x (A(f(\underline{a}, x), z) \to \exists y (B(y) \land C(x, y, z))).$
 - i. Underline the scope of each quantifier in the above formula.
 - ii. Circle all of the bound variables in the above formula.
 - iii. Circle the correct answers and fill in the blanks below:

The formula above IS / IS NOT a sentence since _____

The term $t = g(y, \underline{a})$ **IS** / **IS NOT** free for z in the formula above.

(b) Consider the formula: $(\forall x \, A(x,\underline{c})) \to (\exists y \, B(y)).$

Translate the above formula into plain English when our model consists of the universe of all people, A(x,y) := x loves y, B(x) := x likes the Middle, and $\underline{c} := \text{Raymond}$.

(c) Consider the formula: $(\forall x \, A(x)) \vee (\exists z \, B(f(z), \underline{c}))$.

My model uses the universe of natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$ and defines B(x, y) := "x < y". Finish specifying my model in such a way that we prove the above statement is not logically valid.

4. (25 points) System K

(a) I have provided a proof of Lemma K17 below – except the justifications are missing.

Fill in the justifications.

Lemma K17 $\forall x \neg A(x) \vdash_K \neg \exists x A(x)$

1: $\forall x \neg A(x)$

 $2: \ \forall x \, \neg A(x) \to \neg \neg \forall x \, \neg A(x)$

 $3: \neg \neg \forall x \neg A(x)$

 $4: \neg \exists x \, A(x)$

(b) Prove Lemma K22: $\vdash_K \exists x \, \forall y \, A(x,y) \to \forall y \, \exists x \, A(x,y).$

Name: _____

Be sure to show your work!

1. (25 points) "Fun" with Truth Tables!

(a) Fill out an abbreviated truth table for the following statement: $(a \vee \neg b) \to (b \wedge \neg a)$. Circle your concluding truth values and the correct answer:

This statement is a Contingency / Contradiction / Tautology.

(b) Show that $\neg a \land \neg b$ and $\neg (a \lor b)$ are logically equivalent.

(c) Consider the following statement: $\neg b, a \rightarrow b \vdash \neg a$. Circle the correct answers.

IS / IS NOT a theorem of L by the Soundness / Completeness theorem.

2. (25 points) System L

(a) I have provided a proof of Lemma L8 below – except the justifications are missing.

Fill in the justifications and please be specific!

Lemma L8 $A \to B, B \to C \vdash_L A \to C$

1: $A \rightarrow B$

 $2: B \to C$

3: $A \rightarrow (B \rightarrow C)$

4: $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$

5: $(A \to B) \to (A \to C)$

6: $A \rightarrow C$

- (b) Prove Lemma L10: $\vdash_L (\neg B \to \neg A) \to (A \to B)$.

[You may use the deduction theorem if you wish.]

Hint/Suggestion: Axiom 3 should be helpful.

3.	(25)	points') Models.	Variables.	Free for

- (a) Consider the formula: $\exists x (A(f(z), x) \to \forall y (B(x, y) \land C(\underline{a}, y, w))).$
 - i. Underline the scope of each quantifier in the above formula.
 - ii. Circle all of the bound variables in the above formula.
 - iii. Circle the correct answers and fill in the blanks below:

The formula above IS / IS NOT a sentence since _____

The term $t = g(y, \underline{a})$ **IS** / **IS NOT** free for z in the formula above.

(b) Consider the formula: $(\exists x \, A(x,\underline{c})) \to (\forall y \, B(y)).$

Translate the above formula into plain English when our model consists of the universe of all people, $A(x,y) := \text{``}x \text{ rescues }y\text{''}, B(x) := \text{``}x \text{ will cheer''}, \text{ and }\underline{c} := \text{``Princess Fiona''}.$

(c) Consider the formula: $(\forall x \, A(x,\underline{c})) \vee (\exists z \, B(f(z)))$.

My model uses the universe of natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$ and defines $A(x, y) := "x \ge y"$. Finish specifying my model in such a way that we prove the above statement is not logically valid.

4. (25 points) System K

(a) I have provided a proof of Lemma K17 below – except the justifications are missing.

Fill in the justifications.

Lemma K17 $\forall x \neg A(x) \vdash_K \neg \exists x A(x)$

1: $\forall x \neg A(x)$

 $2: \ \forall x \, \neg A(x) \to \neg \neg \forall x \, \neg A(x)$

 $3: \neg \neg \forall x \neg A(x)$

 $4: \neg \exists x \, A(x)$

(b) Prove Lemma K22: $\vdash_K \exists x \, \forall y \, A(x,y) \to \forall y \, \exists x \, A(x,y).$