Final Exam for Section 101 December 11th, 2009

Name:		Be sure to show your work!
	_/10 points) Let ℓ_1 be the line parameterized by $\mathbf{r}_1(t) =$ parameterized by $\mathbf{r}_2(t) = (t, -3t + 7, 2t - 8)$. Then ℓ_1 and ℓ_2	
	parallel / intersecting / skew / the same li	ne(s).
Circ	le the correct answer. [Note: If you don't show any work, you	ı will not get any credit.]

2. (____/10 points) Let $f(x, y, z) = x - y + z^2$. Find the maximum and minimum values of f if f's inputs are constrained to $x^2 + y^2 + z^2 = 2$.

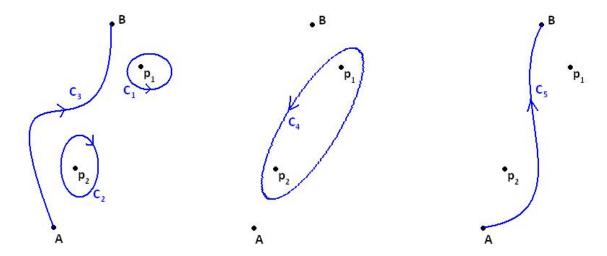
3. (____/10 points) Consider the function $f(x,y) = \frac{e^{-(x^2+y^2)}}{\pi}$

It's easy to see that $f(x,y) \ge 0$ everywhere. Compute $\iint_{\mathbb{R}^2} f(x,y) dA$ and decide if f is a probability distribution function.

NO

4. (_____/8 points) Let C be the circle $(x-1)^2 + y^2 = 4$. Evaluate the integral $\int_C y^2 ds$

5. (____/8 points) Suppose that $\mathbf{F}(x,y) = (P(x,y),Q(x,y))$ is a vector field such that $P_y = Q_x$ except at the points p_1 and p_2 . Let C_1,\ldots,C_5 be the curves described in the picture below. Also, suppose that we know $\int_{C_1} \mathbf{F} \cdot d\mathbf{X} = 2$, $\int_{C_2} \mathbf{F} \cdot d\mathbf{X} = 5$, and $\int_{C_3} \mathbf{F} \cdot d\mathbf{X} = 1$.



(a)
$$\int_{C_4} \mathbf{F} \cdot d\mathbf{X} = \underline{\hspace{1cm}}$$

(b)
$$\int_{C_5} \mathbf{F} \cdot d\mathbf{X} = \underline{\hspace{1cm}}$$

(a)
$$\mathbf{F}(x,y) = (2xy + 2xe^{x^2}, x^2 + 3y^2)$$

(b) $\mathbf{F}(x, y, z) = (yz + e^y + y, xz + xe^y + 3y^2, xy)$

7. (____/10 points) Let C be the circle $x^2+y^2=1$ oriented counter-clockwise. Evaluate $\int_C (e^{\sqrt{x}}-y^3) dx + (x^3+\sqrt{y^3+7}+\arctan(y^2+5)) dy$

8. (____/12 points) Find the centroid of the upper-half of the unit sphere $x^2 + y^2 + z^2 = 1$.

9. (___/12 points) Let C be the rectangular boundary of the part of the plane x + 2y + z = 1 where $0 \le x \le 2$ and $0 \le y \le 1$. C is oriented clockwise when viewed from above. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{X}$ where

 $\mathbf{F}(x,y,z) = (y + \sqrt{x^2 + 1}, z + x^2, 2y + e^{-z^2}).$

10. (____/10 points) Let S_1 be the sphere $x^2 + y^2 + z^2 = 4$ oriented outward. Evaluate the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x,y,z) = (y^2 - \sqrt{z^2 + 1}, e^{x+z}, 3z + \sqrt{x^3 + 10y^2})$.

Final Exam for Section 102 December 15th, 2009

Name:								Be sure to show your work!
) = $(2t+2, -2t+3, 4t+4)$ and let ℓ_2 be ℓ_1 and ℓ_2 are
	parallel	/	intersecting	/	skew	/	the same	line(s).
Circ	cle the cor	rect	answer. [Note:	If v	zou don	't sh	ow any work.	you will not get any credit.

2. (____/10 points) Let $f(x,y) = 2x^2 + y^2 - 2x$.

(a) Find and classify all of the critical (i.e. stationary) points of f. [Determine if each point is a relative minimum, relative maximum, or a saddle point.]

(b) Find the absolute maximum and minimum value of f on the disk $x^2 + y^2 \le 16$. [Use Lagrange Multipliers to determine what happens on the boundary of the disk.]

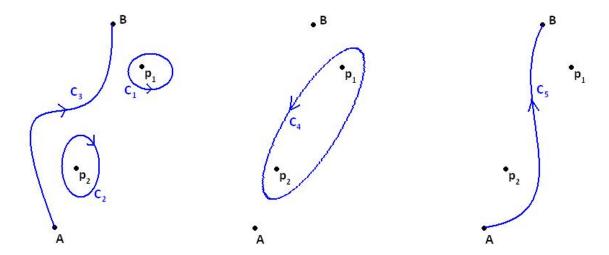
3. (____/10 points) Consider the function $f(x,y) = e^{-(x^2+y^2)}$

It's easy to see that $f(x,y) \ge 0$ everywhere. Compute $\iint_{\mathbb{R}^2} f(x,y) \, dA$ and decide if f is a probability distribution function.

NO

4. (_____/8 points) Let C be the curve parameterized by $\mathbf{X}(t) = (2t, 3, t^2)$ where $0 \le t \le 1$. Evaluate the integral $\int_C xy \, ds$

5. (____/8 points) Suppose that $\mathbf{F}(x,y) = (P(x,y),Q(x,y))$ is a vector field such that $P_y = Q_x$ except at the points p_1 and p_2 . Let C_1,\ldots,C_5 be the curves described in the picture below. Also, suppose that we know $\int_{C_1} \mathbf{F} \cdot d\mathbf{X} = 3$, $\int_{C_2} \mathbf{F} \cdot d\mathbf{X} = -2$, and $\int_{C_3} \mathbf{F} \cdot d\mathbf{X} = 5$.



(a)
$$\int_{C_4} \mathbf{F} \cdot d\mathbf{X} = \underline{\hspace{1cm}}$$

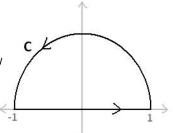
(b)
$$\int_{C_5} \mathbf{F} \cdot d\mathbf{X} = \underline{\hspace{1cm}}$$

6. ($\underline{\hspace{0.2cm}}/10$ points) For each of the following vector fields, decide if ${\bf F}$ is conservative. If ${\bf F}$ is conservative, find a potential function.

(a)
$$\mathbf{F}(x,y) = (2xe^y + 3x^2, x^2e^y + (1+y)e^y + x)$$

(b) $\mathbf{F}(x, y, z) = (yz + 2x, xz + e^z, xy + ye^z)$

7. (____/10 points) Let C be the upper-half of the circle $x^2 + y^2 = 1$ along with the x-axis from -1 to 1 oriented counter-clockwise. Evaluate $\int_C (-2y + \arctan(x^2 + 2) + \sqrt{x^3 + \sin(x)}) \, dx + (x^2 + e^{-y^2}) \, dy$



8. (____/12 points) Find the centroid of S_1 where S_1 is the part of the cone $z = \sqrt{x^2 + y^2}$ which lies below the plane z = 4. S_1 is a surface with surface area $16\pi\sqrt{2}$.

9. (____/12 points) Let C be the rectangular boundary of the part of the plane 2x + y + z = 1 where $0 \le x \le 1$ and $0 \le y \le 2$. C is oriented clockwise when viewed from above. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{X}$ where $\mathbf{F}(x,y,z) = (2y-z^2+e^{\sin(x)+1},\sqrt{y^6+1},y+\tan(\sqrt{z^2+1})).$

10. (____/10 points) Let S_1 be the upper hemi-sphere $x^2 + y^2 + z^2 = 1$ oriented upward. Also, let S_2 be the unit disk in the xy-plane (z = 0 and $x^2 + y^2 \le 1$) oriented upward as well. Suppose that $\iint_{S_2} \mathbf{F} \cdot d\mathbf{S} = \frac{3}{5}\pi \text{ where } \mathbf{F} \text{ is a vector field whose divergence is } \operatorname{div}(\mathbf{F}) = x^2 + y^2 + z^2.$

Evaluate the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$.