Name:

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v}$$
 Arc Length $= \int_a^b |\mathbf{r}'(t)| dt$

- 1. (____/22 points) Let $\mathbf{u} = (1, -1, 1)$ and $\mathbf{v} = (-1, 2, 4)$.
 - (a) Compute the following:

i.
$$|{\bf u}| =$$

ii.
$$|\mathbf{v}| =$$

iii.
$$\mathbf{u} \cdot \mathbf{v} =$$

iv.
$$\mathbf{u} \times \mathbf{v} =$$

v.
$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) =$$

(b) Find the angle between \mathbf{u} and \mathbf{v} (don't worry about evaluating inverse trigonometric functions).

Is this angle... right, acute, or obtuse ? (Circle your answer.)

- (c) Compute the area of the parallelogram spanned by ${\bf u}$ and ${\bf v}$.
- (d) Find a unit vector perpendicular to both \mathbf{u} and \mathbf{v} .
- (e) Are **u** and **v** parallel vectors?

- 2. (____/17 points) Consider the two points P = (-1, 1, 2) and Q = (1, 2, 2) in \mathbb{R}^3 .
 - (a) Find the distance between P and Q.
 - (b) Parameterize the line segment beginning at P and ending at Q. Make sure you include a range for t (i.e. $a \le t \le b$) in your parameterization.

(c) Set up and evaluate an integral which computes the arc length of this line segment.

(d) Let ℓ_1 be the line through P and Q. Let ℓ_2 be the line defined by $\mathbf{L}_2(t) = (-3+t, t, 2+t)$. Determine if ℓ_1 and ℓ_2 are the same, parallel, intersecting, or skew.

3.	(/16 points)	Let C be the circle centered at $(0,3)$ with radius 3.
	(a) Find a (regular	rectangular coordinate) scalar equation for C .

(a) I ma a (regular rectangular ecoramico) sectar equation for ex-

(b) Convert your equation from part (a) to a polar equation.

(c) Parameterize the upper half of this circle (oriented counter-clockwise).

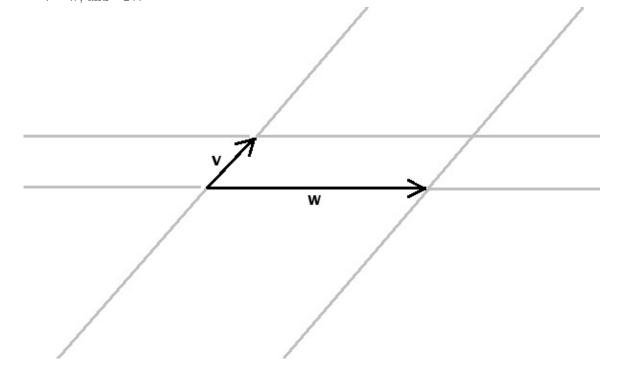
4.	(/16 points) Commander Keen just landed on a small moon located near planet Vorticon. Acceleration due to gravity on this small moon just happens to be 2 m/s^2 . For some reason, Keen seems to be compelled to throw a ball from the top of his 25 meter tall spaceship – so $\mathbf{p}(0) = (0, 25)$. When the ball leaves Keen's hand, it is traveling horizontally at a rate of 10 meters per second – so $\mathbf{v}(0) = (10, 0)$. Assume there is no friction (this moon has no atmosphere) and the ball is in free fall.	
	(a) Find the vector valued function, $\mathbf{v}(t)$, which describes the ball's velocity t seconds after it is thrown.	
	(b) Find the vector valued function, $\mathbf{p}(t)$, which describes the ball's position t seconds after it is thrown.	
	(c) When will the ball hit the ground?	

- 5. (____/14 points) Let Π be the plane containing the points $P=(1,2,1),\ Q=(2,2,2),$ and R=(0,3,2).
 - (a) Find a parameterization for the plane Π .

(b) Find a scalar equation for the plane Π .

- 6. (____/15 points) No numbers here.
 - (a) Let \mathbf{u} and \mathbf{v} be unit vectors. Show that $(\mathbf{u} \cdot \mathbf{v})^2 + |\mathbf{u} \times \mathbf{v}|^2 = 1$.

(b) Two vectors \mathbf{v} and \mathbf{w} are shown in the picture below. Sketch (with labels) the vectors $\mathbf{v} + \mathbf{w}$, $\mathbf{v} - \mathbf{w}$, and $-2\mathbf{v}$.



Name:

Be sure to show your work!

$$\mathrm{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} \qquad \qquad \mathrm{Arc \ Length} \ = \int_a^b |\mathbf{r}'(t)| \, dt$$

- 1. (____/22 points) Let $\mathbf{u} = (2, -1, 1)$ and $\mathbf{v} = (-1, 1, 3)$.
 - (a) Compute the following:

i.
$$|{\bf u}| =$$

ii.
$$|\mathbf{v}| =$$

iii.
$$\mathbf{u} \cdot \mathbf{v} =$$

iv.
$$\mathbf{u} \times \mathbf{v} =$$

v.
$$\text{proj}_{\mathbf{v}}(\mathbf{u}) =$$

(b) Find the angle between \mathbf{u} and \mathbf{v} (don't worry about evaluating inverse trigonometric functions).

Is this angle... right, acute, or obtuse ? (Circle your answer.)

- (c) Compute the area of the parallelogram spanned by \mathbf{u} and \mathbf{v} .
- (d) Find a unit vector perpendicular to both \mathbf{u} and \mathbf{v} .
- (e) Are \mathbf{u} and \mathbf{v} parallel vectors?

- 2. (___/12 points) Consider the vector valued function defined by $\mathbf{r}(t) = (4\cos(t), 4\sin(t), 3t)$ where $-\pi \le t \le \pi$.
 - (a) Set up and evaluate an integral which computes this curve's arc length.

(b) Find an equation for the line tangent to $\mathbf{r}(t)$ at t = 0.

3. (____/8 points) Let ℓ_1 be the line parameterized by $\mathbf{L}_1(t) = (1+t, 1+2t, 1)$ and ℓ_2 the line parameterized by $\mathbf{L}_2(t) = (-t, 5+t, -1-2t)$. Are these lines the same, parallel, intersecting, or skew?

4. (____/7 points) Convert the polar equation $r = 5\sec(\theta)$ to a rectangular equation.

5. (___/6 points) Consider the circle $(x-1)^2 + (y+3)^2 = 4^2$. Parameterize the upper-half of this

- 6. (___/12 points) Commander Keen just landed on a small moon located near planet Vorticon. Acceleration due to gravity on this small moon just happens to be 2 m/s^2 . For some reason, Keen seems to be compelled to throw a ball from the top of his 10 meter tall spaceship so $\mathbf{p}(0) = (0, 10)$. When the ball leaves Keen's hand, it is traveling horizontally at a rate of 5 meters per second so $\mathbf{v}(0) = (5,0)$. Assume there is no friction (this moon has no atmosphere) and the ball is in free fall.
 - (a) Find the vector valued function, $\mathbf{v}(t)$, which describes the ball's velocity t seconds after it is thrown.

(b) Find the vector valued function, $\mathbf{p}(t)$, which describes the ball's position t seconds after it is thrown.

- 7. $(\underline{}/18 \text{ points})$ Let Π be the plane containing the points $P=(1,2,1),\ Q=(3,3,2),\ \text{and}\ R=(1,-1,4).$
 - (a) Find a parameterization for Π .

(b) Find a scalar equation for Π .

(c) Consider the plane Π_2 defined by x-y-z=0. Are the planes Π and Π_2 parallel, perpendicular, or neither?

8. (___/15 points) Let $\mathbf u$ and $\mathbf v$ be vectors of equal length. Show $(\mathbf u + \mathbf v) \cdot (\mathbf u - \mathbf v) = 0$. What does this tell us about $\mathbf u + \mathbf v$ and $\mathbf u - \mathbf v$?

Draw a picture to illustrate this fact (sketch $\mathbf u$, $\mathbf v$, $\mathbf u + \mathbf v$, $\mathbf u - \mathbf v$ with labels).