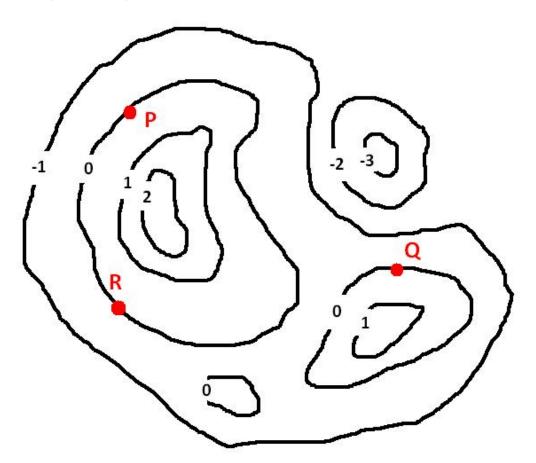
Name:

Be sure to show your work!

1. (____/10 points) Compute the curvature of $\mathbf{r}(t) = (t+2, 3t+4, 5t+6)$.

2. (___/10 points) Let $f(x,y) = x + x^2y^2 - y$. Find the equation of the line tangent to f(x,y) = 1 at the point (-1,2).

3. (___/10 points) The following graph is a contour map of z = f(x,y). Each contour is labeled with its z-value (i.e. "height").



(a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero.

i.
$$f_x(P)$$
 is ______.

ii.
$$f_y(P)$$
 is ______.

iii.
$$f_x(Q)$$
 is ______.

iv.
$$f_y(Q)$$
 is ______.

(b) Sketch $\nabla f(R)$ in the plot above.

4. (____/12 points) Find the quadratic approximation of $f(x,y) = x^2y$ at the point (-1,1).

5. (____/12 points) Let $f(x,y) = e^{x+y}$.

(a) Compute $\mathbf{D}_{\mathbf{u}} f(1, -1)$ where $\mathbf{u} = \frac{1}{\sqrt{2}}(-1, 1)$.

(b) If I want to maximize $\mathbf{D}_{\mathbf{w}}f(1,-1)$, what vector \mathbf{w} should I use?

- **6.** (____/12 points) Let $f(x,y) = (xy, y^2)$ and g(u, v) = 2u v.
 - (a) Find the Jacobian, f', of f.

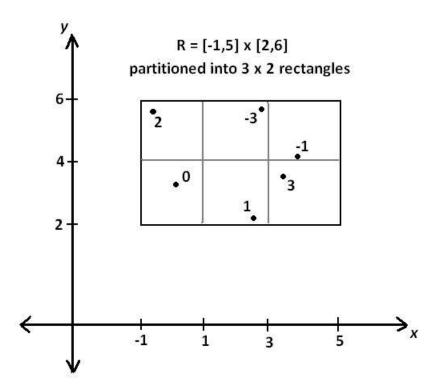
(b) Find the Jacobian, g', of g.

(c) Use the chain rule to find the Jacobian, $(g \circ f)'$, of $g \circ f$.

7. (____/12 points) Find the maximum and minimum values of f(x,y) = 2x - 6y if $x^2 + 3y^2 = 1$.

8. (___/12 points) The function $f(x,y) = 4xy - x^4 - y^4$ has critical points located at (0,0), (1,1), and (-1,-1). Determine whether each point is a relative minimum, relative maximum, or saddle point.

9. (____/10 points) Approximate the integral $\iint_R f(x,y) dA$ where R, a partition, and sample points with their f(x,y)-values are shown below.



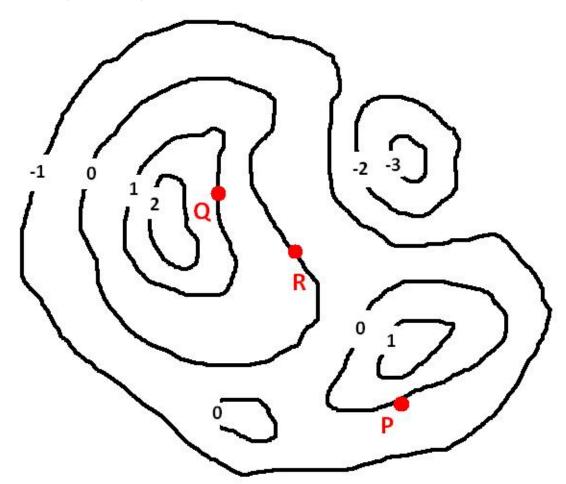
Name:

Be sure to show your work!

1. (____/10 points) Compute the curvature of $\mathbf{r}(t) = (2\cos(t) + 3, 2\sin(t) + 4)$.

2. (__/12 points) Let $f(x,y,z) = x^2 + 2y^2 + 3z^2$. Find the equation of the plane tangent to f(x,y,z) = 7 at the point (2,0,1).

3. (___/10 points) The following graph is a contour map of z = f(x,y). Each contour is labeled with its z-value (i.e. "height").



(a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero.

i.
$$f_x(P)$$
 is ______.

ii.
$$f_y(P)$$
 is ______.

iii.
$$f_x(Q)$$
 is ______.

iv.
$$f_y(Q)$$
 is ______.

(b) Sketch $\nabla f(R)$ in the plot above.

4. (_____/12 points) Find the quadratic approximation of $f(x,y) = xy^2$ at the point (0,-1).

5. (____/12 points) Let f(x, y, z) = xyz.

(a) Compute $\mathbf{D}_{\mathbf{u}} f(1,0,-1)$ where $\mathbf{u} = \frac{1}{\sqrt{2}}(0,1,-1)$.

(b) What is the maximum possible value of $\mathbf{D_w} f(1,0,-1)$?

- **6.** (____/12 points) Let $f(x,y) = (xy, x^2, 2x y)$.
 - (a) Find the Jacobian, f', of f.

(b) Find the linearization of f at (1,0).

7. (____/10 points) Set up equations (coming from the Lagrange multiplier method) which allow you to find the maximum and minimum value of f(x,y) = 2xy subject to the constraint $x^2 + y^2 = 2$.

Just set up the equations — don't solve.

8. (____/12 points) Find the critical points of $f(x,y) = x^2 + 2y^2 + xy^2 + 1$ and then determine whether each is a relative maximum, relative minimum or saddle point. Hint: $4y + 2xy = 2 \cdot y \cdot (x+2)$.

9. (___/10 points) Use the midpoint rule to approximate the integral $\iint_R 2x + y \, dA$ where R and its partition are shown below.

