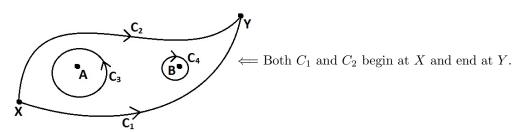
Name:

Be sure to show your work!

- 1. (12 points) Let $\mathbf{F}(x, y, z) = \langle 2y + yz^2, 2x + xz^2 + 1, 2xyz + 3z^2 \rangle$.
- (a) Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the line segment from (-1,0,1) to (2,1,1). Compute this line integral directly. [Do not use the fundamental theorem of line integrals for this part.]

(b) Show **F** is conservative and then use the fundamental theorem of line integrals to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.



2. (6 points) Let $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ be a vector field such that P and Q have continuous first partials and in addition, $P_y = Q_x$ everywhere except at the points A and B. Suppose that $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 5$, $\int_{C_3} \mathbf{F} \cdot d\mathbf{r} = 10$, and $\int_{C_4} \mathbf{F} \cdot d\mathbf{r} = 3$.

Then
$$\int_{C_1} P(x,y) dx + Q(x,y) dy = \underline{\qquad}.$$

- 3. (10 points) Applying the Divergence Theorem.
- (a) Suppose that S_1 and S_2 are oriented smooth surfaces which share the same boundary C. In addition suppose that $S_1 S_2$ is the outward oriented boundary of some simple solid region E. Finally, let $\mathbf{F}(x, y, z)$ be a vector field whose component functions have continuous partials (i.e. a "nice" vector field).

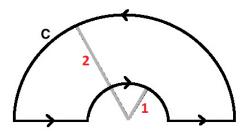
Use the divergence theorem to write down an equation relating $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ and $\iint_{S_2} \mathbf{F} \cdot d\mathbf{S}$.

This demonstrates that if the divergence of **F** is 0, then we will have

(b) Suppose S_1 is the upper-half of the sphere $x^2 + y^2 + z^2 = 1$ ($z \ge 0$) oriented upward. Let S_2 be the unit disk in the xy-plane ($x^2 + y^2 \le 1$) oriented upward. Suppose we know that $\iint_{S_2} \mathbf{F} \cdot d\mathbf{S} = 5$. In addition, we know that $\nabla \cdot \mathbf{F} = 3$. Find $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$.

4. (11 points) Let C be the boundary of the upper-half of the annulus centered at the origin with inner radius 1 and outer radius 2 oriented counter-clockwise.

Find
$$\int_C \left(e^{-x^3 + 77x} - y^3 \right) dx + \left(\frac{1}{\sqrt[3]{y^5 + 9}} + x^3 \right) dy$$



5. (12 points) Find the centroid of C where C is parameterized by $\mathbf{r}(t) = \langle 3\cos(t), 4t, 3\sin(t) \rangle$, $0 \le t \le 2\pi$. [Note: You must work out these line integrals. I don't want answers via symmetry.]

$$m = \int_C ds$$
 $M_{yz} = \int_C x ds$ $M_{xz} = \int_C y ds$ $M_{xy} = \int_C z ds$

6. (12 points) Find the centroid of the of the part of the unit sphere $x^2 + y^2 + z^2 = 1$ which lies in the first octant (i.e. $x, y, z \ge 0$). Please use geometry and symmetry to cut down the number of <u>surface</u> integrals you need to compute. You are dealing with **one-eighth** of the unit sphere.

$$m = \iint_C dS$$
 $M_{yz} = \iint_C x dS$ $M_{xz} = \iint_C y dS$ $M_{xy} = \iint_C z dS$

$\overline{}$	$(12 \text{ moints}) \text{ T} + \alpha$	be the surface paramete	• 11 /)	/ / / / / /	2\ 1 1 /	< 0 10 < < 0
١.	115 DOINGS Let S_1	ı be the surface paramete	rized by $\mathbf{r}(u,v) = v$	$(u\cos(v),u\sin(v),4)$	$-u^2$ where $1 \le u$	< 2 and $0 < v < 2\pi$.

(a) Find both orientations for S_1 .

(b) Set up but do not evaluate the surface integral $\iint_{S_1} ((z-2x)e^y) dS$. [Don't worry about simplifying.]

(c) Set up but **do not evaluate** the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ where S_1 is <u>oriented downward</u> and $\mathbf{F}(x, y, z) = \langle z, x + y, x^3 \rangle$. [Don't worry about computing the dot product or any significant simplifying.]

8. (11 points) Let E be solid bounded below by $z=x^2+y^2$ and above by z=4 and let S_1 be the surface of E oriented outward and let $\mathbf{F}(x,y,z)=\langle xy^2,yx^2,2\rangle$. Compute $\iint_{S_1}\mathbf{F}\bullet d\mathbf{S}$. Hint: S_1 is closed surface bounding the solid region E.

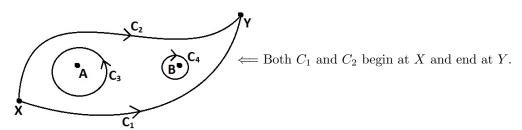
9. (13 points) Let C be the circle $x^2 + y^2 = 9$ where z = 2 (a circle of radius 3 parallel to the xy-plane and centered at (0,0,2)). Orient C counter-clockwise when viewed from above. Verify Stokes' Theorem for S_1 (the disk whose boundary is C) and the vector field $\mathbf{F}(x,y,z) = \langle y,yz,z\rangle$.

Name:

Be sure to show your work!

- 1. (12 points) Let $\mathbf{F}(x, y, z) = \langle y + yz^2 + 1, x + xz^2, 2xyz + e^z \rangle$.
- (a) Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the line segment from (1,0,2) to (4,1,2). Compute this line integral directly. [Do not use the fundamental theorem of line integrals for this part.]

(b) Show **F** is conservative and then use the fundamental theorem of line integrals to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.



2. (6 points) Let $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ be a vector field such that P and Q have continuous first partials and in addition, $P_y = Q_x$ everywhere except at the points A and B. Suppose that $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 6$, $\int_{C_3} \mathbf{F} \cdot d\mathbf{r} = 4$, and $\int_{C_4} \mathbf{F} \cdot d\mathbf{r} = 5$.

Then
$$\int_{C_1} P(x,y) dx + Q(x,y) dy = \underline{\qquad}$$

- 3. (10 points) Applying the Divergence Theorem.
- (a) Suppose that S_1 and S_2 are oriented smooth surfaces which share the same boundary C. In addition suppose that $S_1 S_2$ is the outward oriented boundary of some simple solid region E. Finally, let $\mathbf{F}(x, y, z)$ be a vector field whose component functions have continuous partials (i.e. a "nice" vector field).

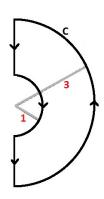
Use the divergence theorem to write down an equation relating $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ and $\iint_{S_2} \mathbf{F} \cdot d\mathbf{S}$.

This demonstrates that if the divergence of **F** is 0, then we will have

(b) Suppose S_1 is the upper-half of the sphere $x^2 + y^2 + z^2 = 1$ ($z \ge 0$) oriented upward. Let S_2 be the unit disk in the xy-plane ($x^2 + y^2 \le 1$) oriented upward. Suppose we know that $\iint_{S_2} \mathbf{F} \cdot d\mathbf{S} = 10$. In addition, we know that $\nabla \cdot \mathbf{F} = 6$. Find $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$.

4. (11 points) Let C be the boundary of the right-half of the annulus centered at the origin with inner radius 1 and outer radius 3. Also, C is oriented counter-clockwise.

Find
$$\int_C \left(e^{-x^3 + 77x} - xy \right) dx + \left(\frac{1}{\sqrt[3]{y^5 + 9}} \right) dy$$



5. (12 points) Find the centroid of C where C is parameterized by $\mathbf{r}(t) = \langle 4t, 3\cos(t), 3\sin(t) \rangle$, $0 \le t \le 2\pi$. [Note: You must work out these line integrals. I don't want answers via symmetry.]

$$m = \int_C ds$$
 $M_{yz} = \int_C x ds$ $M_{xz} = \int_C y ds$ $M_{xy} = \int_C z ds$

6. (12 points) Find the centroid of the of the <u>lower-half</u> of the unit sphere $x^2 + y^2 + z^2 = 1$ (and $z \le 0$). Please use geometry and symmetry to cut down the number of <u>surface</u> integrals you need to compute.

$$m = \iint_C dS$$
 $M_{yz} = \iint_C x dS$ $M_{xz} = \iint_C y dS$ $M_{xy} = \iint_C z dS$

7	(13 points) Let S.	be the surface parameterize	$d b \mathbf{r} \mathbf{r}(u, u) = /a$	$a \cos(a) = a \sin(a) = 3$	u\ mhoro 1 < u <	≤ 2 and $0 \leq a \leq 2\pi$
١.	119 00111091 126 21	i de the surface darameterize	u by $\mathbf{I}(u,v) = v$	$\iota \cos(\upsilon)$, $\iota \sin(\upsilon)$, $\iota =$	u where $1 > u$	\sim 3 and 0 \sim $v\sim$ 2π

(a) Find both orientations for S_1 .

(b) Set up but **do not evaluate** the surface integral $\iint_{S_1} (x^2 + y) \sin(z) dS$. [Don't worry about simplifying.]

(c) Set up but **do not evaluate** the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ where S_1 is <u>oriented downward</u> and $\mathbf{F}(x, y, z) = \langle y^2, z, xy \rangle$. [Don't worry about computing the dot product or any significant simplifying.]

8. (11 points) Let E be solid bounded below by $z=x^2+y^2$ and above by z=4 and let S_1 be the surface of E oriented outward and let $\mathbf{F}(x,y,z)=\langle xy^2,yx^2,2\rangle$. Compute $\iint_{S_1}\mathbf{F}\bullet d\mathbf{S}$. Hint: S_1 is closed surface bounding the solid region E.

9. (13 points) Let C be the circle $x^2 + y^2 = 9$ where z = 2 (a circle of radius 3 parallel to the xy-plane and centered at (0,0,2)). Orient C counter-clockwise when viewed from above. Verify Stokes' Theorem for S_1 (the disk whose boundary is C) and the vector field $\mathbf{F}(x,y,z) = \langle y,yz,z\rangle$.