Name: _____

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t) \qquad \kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

$$m = \int_C \rho \, ds \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_C x \rho \, ds, \int_C y \rho \, ds, \int_C z \rho \, ds\right) \qquad \kappa = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{\frac{3}{2}}}$$

- 1. (18 points) Vector Basics
- (a) Find the volume of the parallelepiped spanned by $\mathbf{u} = \langle 1, 2, -1 \rangle$, $\mathbf{v} = \langle 1, 0, 1 \rangle$, and $\mathbf{w} = \langle -1, 2, 2 \rangle$.

(b) Find the angle between $\mathbf{u} = \langle 3, 2, 1 \rangle$ and $\mathbf{w} = \langle 0, 1, 1 \rangle$ (don't worry about evaluating inverse trig. functions).

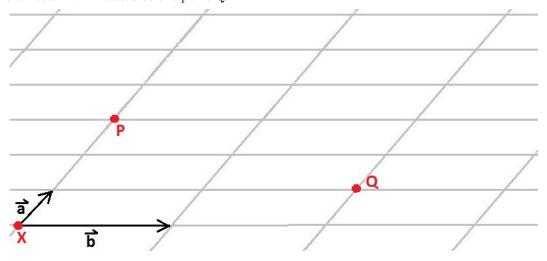
Is this angle... right, acute, or obtuse ? (Circle your answer.)

(c) Fill in the blanks...

 $|\mathbf{a} \times \mathbf{b}|$ computes the ______ of the _____ spanned by \mathbf{a} and \mathbf{b} .

 $|\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})|$ computes the ______ of the _____ spanned by $\mathbf{a},\,\mathbf{b},\,$ and $\mathbf{c}.$

(d) The vectors **a** and **b** are shown below. They are based a the point X. Sketch the vector 1.5**b** based at the point P and sketch the vector $\mathbf{b} - \mathbf{a}$ based at the point Q.



2.	(9 points) Let ℓ_1 be parametrized by $\mathbf{r}_1(t) =$	$(1,0,-1) + \langle 1,2,-1 \rangle t$ and ℓ_2 by $\mathbf{r}_2(t) = \langle 1,-4,1 \rangle + \langle -2,-4,2 \rangle t$.
De	ermine if ℓ_1 and ℓ_2 are (circle the correct answer	

the same, parallel (but not the same), intersecting, or skew.

3. (14 points) Plane old geometry.

(a) Find the (scalar) equation of the plane through the points $A=(2,2,1),\,B=(3,2,1),$ and C=(4,3,-1).

(b) Find the area of the triangle $\triangle ABC$ (the triangle with vertices A, B, and C).

4. (7 points) Find a formula for the curvature of $y = \sin(x)$.

5	(18 point	c) Lot C	ha tha nigh	t balf of	the single	$x^2 + y^2 = 4.$
ъ.	(18 point)	S) Let C	be the righ	t half of	the circle	$x^{2} + y^{2} = 4$.

(a) Parameterize C and find a parameterization for the line tangent to C at $(\sqrt{2}, \sqrt{2})$.

(b) Find the centroid of C.

6. (10 points) Find the curvature of the curve parameterized by $\mathbf{r}(t) = \langle e^t, t^2 + 1, \sin(t) \rangle$. [Don't try to simplify your answer.]

7.	(12 points)	Find the TNB-f	rame for $\mathbf{r}(t) =$	$\langle \cos(t), t, \sin(t) \rangle$.

- 8. (12 points) No numbers here. Choose ONE of the following:
 - I. Suppose that ${\bf a}$ and ${\bf b}$ are both orthogonal to ${\bf c}$. Show that $2{\bf a}-{\bf b}$ is orthogonal to ${\bf c}$.
- II. Prove Lagrange's identity: $|\mathbf{a} \times \mathbf{b}|^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 (\mathbf{a} \cdot \mathbf{b})^2$.

Name:

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \mathbf{v} \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t) \qquad \kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^{3}}$$

$$m = \int_{C} \rho \, ds \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_{C} x \rho \, ds, \int_{C} y \rho \, ds, \int_{C} z \rho \, ds\right) \qquad \kappa = \frac{|f''(x)|}{\left(1 + (f'(x))^{2}\right)^{\frac{3}{2}}}$$

- 1. (18 points) Vector Basics
- (a) Find the volume of the parallelepiped spanned by $\mathbf{u} = \langle 2, 0, -1 \rangle$, $\mathbf{v} = \langle 1, 1, 2 \rangle$, and $\mathbf{w} = \langle 1, 2, 1 \rangle$.

(b) Find the angle between $\mathbf{u} = \langle -1, 2, 1 \rangle$ and $\mathbf{w} = \langle 3, 0, 1 \rangle$ (don't worry about evaluating inverse trig. functions).

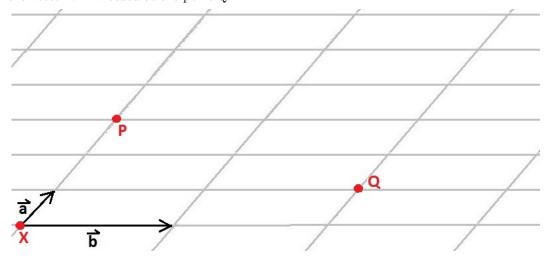
Is this angle... right, acute, or obtuse? (Circle your answer.)

(c) Fill in the blanks...

 $|\mathbf{a} \times \mathbf{b}|$ computes the ______ of the _____ spanned by \mathbf{a} and \mathbf{b} .

 $|\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})|$ computes the ______ of the _____ spanned by $\mathbf{a},\,\mathbf{b},\,$ and $\mathbf{c}.$

(d) The vectors **a** and **b** are shown below. They are based a the point X. Sketch the vector 1.5**a** based at the point P and sketch the vector $\mathbf{a} - \mathbf{b}$ based at the point Q.



2.	(9 points) Let ℓ_1 be	e parametrized by	$\mathbf{r}_1(t) =$	$\langle 1, 0,$	$-1\rangle$ +	$\langle 1, 2, -1 \rangle t$	and	ℓ_2 by	$\mathbf{r}_2(t)$ =	$=\langle 1,$	4,1 angle -	⊢ ⟨1,	$-2,2\rangle t.$
Dete	rmine if ℓ_1 a	nd ℓ_2 are	. (circle the correct	answer)										

the same, parallel (but not the same), intersecting, or skew.

3. (14 points) Plane old geometry.

(a) Find the (scalar) equation of the plane through the points $A=(1,2,2),\,B=(2,2,4),$ and C=(-1,3,3).

(b) Find the area of the triangle $\triangle ABC$ (the triangle with vertices A, B, and C).

4. (7 points) Find a formula for the curvature of $y = x^3$.

- 5. (18 points) Let C be the bottom half of the circle $x^2 + y^2 = 4$.
- (a) Parameterize C and find a parameterization for the line tangent to C at $(\sqrt{2}, -\sqrt{2})$.

(b) Find the centroid of C.

6. (10 points) Find the curvature of the curve parameterized by $\mathbf{r}(t) = \langle \cos(t), e^t + 1, t^2 \rangle$. [Don't try to simplify your answer.]

7. (12 points)	Find the TNB-fra	name for $\mathbf{r}(t) = \mathbf{r}(t)$	$\langle t, \sin(t), \cos(t) \rangle.$

- 8. (12 points) No numbers here. Choose ONE of the following:
 - I. Suppose $|\mathbf{r}(t)| = c$ ($\mathbf{r}(t)$ has constant length) for all t. Show that $\mathbf{r}(t)$ is orthogonal to $\mathbf{r}'(t)$.
- II. Compute $(\mathbf{a} + \mathbf{b}) \bullet (\mathbf{a} \times \mathbf{b})$. Then give a geometric interpretation of your computation.