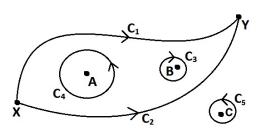
Be sure to show your work!

- 1. (15 points) Let $\mathbf{F}(x,y,z) = \langle yz + 2xy, x^2 + xz, xy + 1 \rangle$ and let C be the curve parameterized by $\mathbf{r}(t) = \langle 2\cos(t), t, 2\sin(t) \rangle$ where $0 \le t \le 2\pi$.
- (a) Verify that ${\bf F}$ is conservative and find a potential function.

(b) Set up the line integral $\int_C \mathbf{F} \bullet d\mathbf{r}$ using the given parameterization for C.

(c) Compute $\int_C \mathbf{F} \bullet d\mathbf{r}$.



 \leftarrow Both C_1 and C_2 begin at X and end at Y.

- 2. (6 points) Let $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ be a vector field such that P and Q have continuous first partials and in addition, $P_y = Q_x$ everywhere except at the points A, B, and C. Suppose that $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 3$, $\int_{C_3} \mathbf{F} \cdot d\mathbf{r} = 8$, $\int_{C_4} \mathbf{F} \cdot d\mathbf{r} = 2$, and $\int_{C_5} \mathbf{F} \cdot d\mathbf{r} = 10$.

 Then $\int_{C_1} P(x,y) \, dx + Q(x,y) \, dy = \underline{\qquad}$.
- 3. (10 points) Compute the area inside the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ using a line integral.

4. (10 points) Let C be the boundary of the square with vertices (1,2), (3,2), (3,4), and (1,4) oriented counter-clockwise. Compute $\int_C \left(\frac{\sin(x)}{x} + y^2\right) dx + \left(3x + \cos(\sqrt{y^4 + 1})\right) dy$.

5. (14 points) Find the centroid of the part of the cone $z = \sqrt{x^2 + y^2}$ which lies between z = 1 and z = 2.

Note: This is a surface. You should be computing surface integrals.

$$m = \iint_S dS$$
 $M_{yz} = \iint_S x dS$ $M_{xz} = \iint_S y dS$ $M_{xy} = \iint_S z dS$

- 6. (14 points) The divergence theorem might be helpful.
- (a) Let S_1 be the upper hemisphere $x^2+y^2+z^2=4, z\geq 0$. Let S_2 be the disk $x^2+y^2\leq 4$ in the xy-plane. Orient both S_1 and S_2 upward. Suppose that \mathbf{F} is a smooth vector field such that $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = 10$ and $\nabla \cdot \mathbf{F} = 3$. Find $\iint_{S_2} \mathbf{F} \cdot d\mathbf{S}$.

(b) Compute the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ where S_1 is the unit sphere (i.e. $x^2 + y^2 + z^2 = 1$) oriented outward and $\mathbf{F}(x, y, z) = \left\langle x^3 + \sqrt{y^{10} + z^{10}}, e^{xz} + y^3, \sin(x^{15} + y + 1) + z^3 \right\rangle$.

7.	(15 points)	Let S	be the surface	narameterized	by r	(u,v) =	$\langle u \sin(v) \rangle$	$u\cos(v)$ v^2	where 0 <	u < 3 and	$-\pi < v <$	n
	(TO POILIOS	LCUD	DC the surface	parameterized	Dyl	a, c, -	(a siii (b)	, u cos(v), v	/ WIICIC U \	u > 0 and	. // \ \ \	\mathbf{v} .

(a) Find both orientations for S_1 .

(b) Set up but **do not evaluate** the surface integral $\iint_{S_1} x^3 e^y \cos(z) dS$.

(c) Set up but **do not evaluate** the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ where S_1 is <u>oriented upward</u> and $\mathbf{F}(x, y, z) = \langle x^2 + y^2, z, 5 \rangle$.

8. (16 points) Let S_1 be the part of the plane 2x+y+z=2 lying in the first octant and oriented upward. Verify Stokes' Theorem for the surface S_1 , its boundary, and the vector field $\mathbf{F}(x,y,z)=\langle y,x,yz\rangle$.

