Name:

Be sure to show your work!

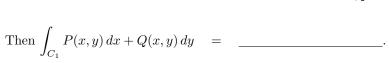
1. (14 points) Let $\mathbf{F}(x,y,z) = \langle 2xyz+1, 2y+x^2z+2yz^3, 3y^2z^2+x^2y+1 \rangle$. Also, let C be the part of the circle $x^2+y^2=4$ and z=0 which lies in the first quadrant and is oriented counter-clockwise.

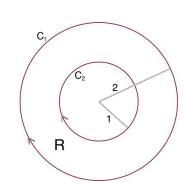
- (a) Show \mathbf{F} is conservative.
- (b) Use the fundamental theorem of line integrals to compute $\int_C {\bf F} \bullet d{\bf r}.$

(c) Recompute $\int_C \mathbf{F} \bullet d\mathbf{r}$ directly (i.e. parameterize C etc.).

2. (8 points) C_1 is a circle of radius 2 and C_2 is a circle of radius 1 (both oriented <u>clockwise</u>). Let $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ be a vector field such that P and Q have continuous first partials and in addition, $Q_x - P_y = 3$ for all points in the annulus R (between the circles C_1 and C_2). Suppose that we also know

$$\int_{C_2} P(x,y) dx + Q(x,y) dy = \pi.$$





3. (1	0 points) L	et C be the	boundary of a	triangle w	ith vertices	(0,0),	(1,0), and	(1,2)	oriented	counter-clo	ckwise
Compu	te $\int_C \sin\left(\sqrt[4]{x^6}\right)$	(x+7) $dx + (x+7)$	$\left(x^2 + e^{y^4 + \sin(y)}\right)$) dy.							

4. (13 points) Find the centroid of the part of the cone $z = 6 - 3\sqrt{x^2 + y^2}$ which lies above the xy-plane. Note: This is a surface. You should be computing surface integrals.

$$m = \iint_{S_1} dS$$
 $M_{yz} = \iint_{S_1} x \, dS$ $M_{xz} = \iint_{S_1} y \, dS$ $M_{xy} = \iint_{S_1} z \, dS$

5.	(13 points)	Let S_1	be parameterized l	ov $\mathbf{r}(u,v) = \langle 3 \rangle$	$3u\sin(v), u^2, 3$	$Bu\cos(v)$ where	$1 < u < 2$ and $\pi < 1$	$v < 2\pi$.

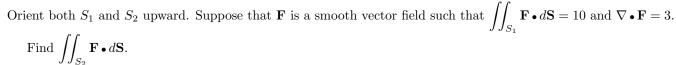
(a) Find both orientations for S_1 .

(b) Set up but **do not evaluate** the surface integral $\iint_{S_1} (x^3 + z) \cos(y^2) dS$. [Don't worry about simplifying.]

(c) Set up but **do not evaluate** the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ where S_1 is oriented in the negative y-axis direction and $\mathbf{F}(x,y,z) = \langle x^2 + z^2, 5, x \rangle$. [Don't worry about computing the dot product or any significant simplification.]

6. (8 points) Let S_1 be the part of the sphere $x^2 + y^2 + z^2 = 25$ where $z \le 0$ and $x \ge 0$. Parameterize S_1 .

Don't forget to specify bounds for your parameterization!



8. (10 points) Compute the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ where S_1 is the unit sphere (i.e. $x^2 + y^2 + z^2 = 1$) oriented outward and $\mathbf{F}(x,y,z) = \left\langle x^3 + \sqrt{y^{10} + z^{10}}, e^{xz} + y^3, \sin(x^{15} + y + 1) + z^3 \right\rangle$.

7. (10 points) Let S_1 be the upper hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$. Let S_2 be the disk $x^2 + y^2 \le 4$ in the xy-plane.

9. (14 points) Let S_1 be the part of the paraboloid $z = x^2 + y^2$ which lies below z = 4. Orient S_1 downward. Verify Stokes' Theorem for the surface S_1 , its boundary, and the vector field $\mathbf{F}(x, y, z) = \langle 2yz, 1, xy \rangle$.