Name:

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \mathbf{v} \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t) \qquad \kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^{3}}$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

$$m = \int_{C} \rho \, ds$$

$$m = \int_C \rho \, ds \qquad \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_C x \rho \, ds, \int_C y \rho \, ds, \int_C z \rho \, ds \right)$$

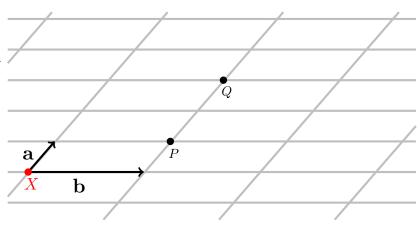
- $\kappa = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{\frac{3}{2}}}$
- 1. (20 points) Vector Basics: Let $\mathbf{v} = \langle 1, 2, -3 \rangle$, $\mathbf{w} = \langle 1, -2, 2 \rangle$, and $\mathbf{u} = \langle -2, 1, 1 \rangle$.
- (a) Find the area of a parallelogram spanned by \mathbf{v} and \mathbf{w} .

(b) Compute the volume of the parallelepiped spanned by **u**, **v**, and **w**.

(c) Find the angle between **v** and **w** (don't worry about evaluating inverse trig. functions).

Is this angle... right, **obtuse** ? (Circle your answer.) acute,

(d) Match with the correct response: [One of these answers doesn't occur.]


 $\mathbf{A} \mid \mathbf{a} \text{ and } \mathbf{b} \text{ are parallel},$ $|\mathbf{B}|$ **a** and **b** are perpendicular, **C** a and b are normalized, or **D** this is always true.

 $\mathbf{a} \cdot \mathbf{b} = 0$

 $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = 0$

 $\mathbf{a} \times \mathbf{b} = \mathbf{0}$

(e) The vectors **a** and **b** are shown to the right. They are based at the point X. Sketch the vector $-2\mathbf{a} + \mathbf{b}$ based at the point P and sketch the vector $\mathbf{a} - \mathbf{b}$ based at the point Q.

2. (10 points) $P = (3, 1, 2)$ and Q	Let ℓ_1 be param $Q = (2, 2, 0)$. Determined	etrized by $\mathbf{r}_1(t) = \langle 1 \rangle$ ermine if ℓ_1 and ℓ_2 a	1+2t, 2-2t, 4t are (circle the	and let ℓ_2 be the line correct answer)	which p	passes through the points
	the same,	parallel (but no	ot the same),	intersecting,	or	skew.
3. (12 points)	Plane old geome	etry.				
(a) Find a (scalar)) equation for the	e plane containing the	he points $A = (1$	A, 2, -1), B = (3, 1, 1),	and C	f = (2, 1, 2).
(b) Consider the l	ine parameterize	d by $\mathbf{r}(t) = \langle 1+t, 2 \rangle$	(2+4t,4-t) and	I the plane $-3x + y +$	-z = 8	a. Are the line and plane
parallel, perpe	endicular, both, o	r neither?				
						is thrown starting at an
		nents are made in f			tion r((t) for this ball at time t .

The ball's initial speed is _____ feet per second.

5	(15 pc	nints)	Consider the curve	C	narameterized h	a r	(+) —	/#3	e^{2t} 3	۴\	1 <	< +	< 5
J.	(TO be	ן פטנננע	onsider the curve	$^{\circ}$	parameterized t	y I	(ι) —	$\setminus \iota$,	e^{-}, o	,, —	Τ.	$\geq \iota$	_ ∍

(a) Find a parameterization, $\ell(t)$, for the line tangent to C at t=0.

(b) Set up the line integral $\int_C x^2 y \sin(z) ds$. [Do not try to evaluate this integral! It will only end in tears.]

(c) Compute the curvature of C.

6. (9 points) Let C be the ellipse $\frac{(x+2)^2}{9} + \frac{(y-1)^2}{4} = 1$. Parameterize C and set up an integral which computes its arc length.

[Again, do **not** try to evaluate this integral! It will only end in tears.]

7. (14 points) Consider the curve parameterized by $\mathbf{r}(t) = \langle 3\sin(t), 4t, 3\cos(t) \rangle$.
(a) Find the TNB-frame for $\mathbf{r}(t)$.
(b) Does this curve lie in a plane? Why or why not?
(a) Find the currenture of this curve
(c) Find the curvature of this curve.
8. (11 points) Choose ONE of the following:
I. Let a and b be unit vectors. Show that $ \mathbf{a} \times \mathbf{b} ^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 1$.
[Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.]
II. Suppose that $ \mathbf{r}(t) = c$ (c is some constant). Show that $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal.

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} \qquad \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t) \qquad \qquad \kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

$$\kappa = \left| \frac{d\mathbf{I}}{ds} \right| = \frac{|\mathbf{I}(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{I}(t)| \times |\mathbf{I}(t)|}{|\mathbf{r}'(t)|^3}$$

$$\kappa = \frac{|f''(x)|}{|\mathbf{I}(t)|}$$

$$m = \int_C \rho \, ds$$

$$m = \int_{C} \rho \, ds \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_{C} x \rho \, ds, \int_{C} y \rho \, ds, \int_{C} z \rho \, ds \right)$$

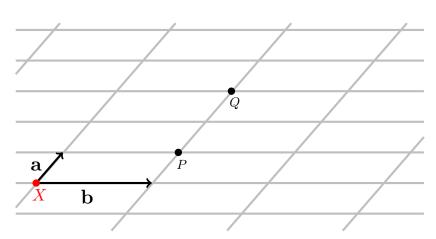
$$\kappa = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{\frac{3}{2}}}$$

- 1. (20 points) Vector Basics: Let $\mathbf{v} = \langle 1, -3, 2 \rangle$, $\mathbf{w} = \langle -1, -2, 2 \rangle$, and $\mathbf{u} = \langle -2, 1, 3 \rangle$.
- (a) Find the area of a parallelogram spanned by \mathbf{v} and \mathbf{w} .

(b) Compute the volume of the parallelepiped spanned by **u**, **v**, and **w**.

(c) Find the angle between **v** and **w** (don't worry about evaluating inverse trig. functions).

Is this angle... right, **obtuse** ? (Circle your answer.) acute,


- (d) Match with the correct response: [One of these answers doesn't occur.]
 - $\mathbf{A} \mid \mathbf{a} \text{ and } \mathbf{b} \text{ are normalized},$ |C| a and b are perpendicular, or $\mathbf{B} \mid \mathbf{a} \text{ and } \mathbf{b} \text{ are parallel},$ $|\mathbf{D}|$ this is always true.

 $\mathbf{a} \times \mathbf{b} = \mathbf{0}$

 $\mathbf{a} \bullet (\mathbf{a} \times \mathbf{b}) = 0$

 $\mathbf{a} \cdot \mathbf{b} = 0$

(e) The vectors **a** and **b** are shown to the right. They are based at the point X. Sketch the vector $2\mathbf{a} - \mathbf{b}$ based at the point P and sketch the vector $-\mathbf{a} + \mathbf{b}$ based at the point Q.

2. (10 $P = (3, $	points) Let ℓ_1 be para $1, 2)$ and $Q = (3, 0, 4)$. De	metrized by $\mathbf{r}_1(t) = \langle 1+2t, 2-2 \rangle$ etermine if ℓ_1 and ℓ_2 are(circle	$t, 4t$ and let ℓ_2 be the line e the correct answer)	which passes through the points
		parallel (but not the same		or skew.
3. (12	points) Plane old geor	metry.		
(a) Fine	d a (scalar) equation for t	the plane containing the points A	A = (2, 1, -1), B = (1, 3, 1),	, and $C = (1, 2, 2)$.
(b) Con	sider the line parameteriz	zed by $\mathbf{r}(t) = \langle 2 + 6t, 1 - 2t, 3 - 4t \rangle$	2t and the plane $-3x + y$	+z = 8. Are the line and plane
para	allel, perpendicular, both,	, or neither?	, -	
4. (9	points) Recall that the	e acceleration due to gravity is ϵ	$\mathbf{h}(t) = -32\mathbf{k}$. Suppose that	a ball is thrown starting at an
initial p [For	osition $\mathbf{r}_0 = \mathbf{i} - 5\mathbf{k}$ with ϵ what it's worth measure	an initial velocity of $\mathbf{v}_0 = \mathbf{i} + 2\mathbf{j}$ rements are made in feet and sec	+ k . Find the position functionds.]	tion $\mathbf{r}(t)$ for this ball at time t .

The ball's initial speed is _____ feet per second.

5.	(15 poin	ts) Consider the curve C	parameterized by $\mathbf{r}(t)$	$(t) = \langle e^{-t}, 3t, t \rangle$	$^{4}\rangle, -1 \le t \le 5.$

(a) Find a parameterization, $\ell(t)$, for the line tangent to C at t=0.

(b) Set up the line integral $\int_C x \cos(yz^2) ds$. [Do not try to evaluate this integral! It will only end in tears.]

(c) Compute the curvature of C.

6. (9 points) Let C be the ellipse $\frac{x^2}{16} + \frac{(y-5)^2}{9} = 1$. Parameterize C and set up an integral which computes its arc length.

[Again, do **not** try to evaluate this integral! It will only end in tears.]

 (a) Find the TNB-frame for r(t). (b) Does this curve lie in a plane? Why or why not? (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] II. Suppose that r(t) = c (c is some constant). Show that r(t) and r'(t) are orthogonal. 	7. (14 points) Consider the curve parameterized by $\mathbf{r}(t) = \langle 3t, 4\cos(t), 4\sin(t) \rangle$.
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	(a) Find the TNB-frame for $\mathbf{r}(t)$.
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 (c) Find the curvature of this curve. 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	(b) Does this curve lie in a plane? Why or why not?
 8. (11 points) Choose ONE of the following: I. Let a and b be unit vectors. Show that a × b ² + (a • b)² = 1. [Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.] 	
I. Let a and b be unit vectors. Show that $ \mathbf{a} \times \mathbf{b} ^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 1$. [<i>Hint</i> : Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.]	(c) Find the curvature of this curve.
I. Let a and b be unit vectors. Show that $ \mathbf{a} \times \mathbf{b} ^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 1$. [<i>Hint</i> : Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.]	
I. Let a and b be unit vectors. Show that $ \mathbf{a} \times \mathbf{b} ^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 1$. [<i>Hint</i> : Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.]	
I. Let a and b be unit vectors. Show that $ \mathbf{a} \times \mathbf{b} ^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 1$. [<i>Hint</i> : Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.]	
I. Let a and b be unit vectors. Show that $ \mathbf{a} \times \mathbf{b} ^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 1$. [<i>Hint</i> : Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.]	
[Hint: Use fundamental geometric identities for the dot and cross products. Don't try to do this with components.]	8. (11 points) Choose ONE of the following:
II. Suppose that $ \mathbf{r}(t) = c$ (c is some constant). Show that $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal.	
	II. Suppose that $ \mathbf{r}(t) = c$ (c is some constant). Show that $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal.