Name: ANSWER KEY

Be sure to show your work!

1. (11 points) Lines and Planes

(a) Find an equation for the plane which contains the points: (1,2,3), (1,0,0), and (-1,2,1).

The vectors: (1,2,3)-(1,0,0)=(0,2,3) and (1,2,3)-(-1,2,1)=(2,0,2) go through points on the plane, so they must be parallel to the plane.

Therefore, $(0,2,3) \times (2,0,2) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 2 & 3 \\ 2 & 0 & 2 \end{vmatrix} = (4,6,-4)$ is a normal vector for the plane.

Finally, we just fit the plane through one of the points, say, (1,0,0).

Answer: 4(x-1) + 6(y-0) - 4(z-0) = 0 [which is 2x + 3y - 2z - 2 = 0].

(b) Find parametric equations for the line which passes through the points: (4,1,6) and (1,-3,1).

A vector pointing from (1, -3, 1) to (4, 1, 6) is parallel with the line: (4, 1, 6) - (1, -3, 1) = (3, 4, 5).

Answer: $\mathbf{r}(t) = (1, -3, 1) + (3, 4, 5)t$ is a parametrization of the line (there are many other possible answers).

(c) Consider the level surface $x^3 + xy + 2y^3 + yz + z^3 = 2$. Find an equation for the plane tangent to this surface at the point (1,0,1).

We have $F(x, y, z) = x^3 + xy + 2y^3 + yz + z^3$ and F(x, y, z) = 2. Recall that $\nabla F(1, 0, 1)$ is normal to the level surface at that point.

 $\nabla F = (3x^2 + y, 6y^2 + x + z, y + 3z^2)$ and so $\nabla F(1, 0, 1) = (3, 2, 3)$

Answer: 3(x-1) + 2(y-0) + 3(z-1) = 0 [which is 3x + 2y + 3z - 6 = 0].

- 2. (10 points) Consider the vector valued function: $\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t), t \rangle$ where $0 \le t \le 2\pi$.
- (a) Find a formula for the curvature (i.e. $\kappa(t)$) of $\mathbf{r}(t)$.

Since we have to find the unit tagent and unit normal of $\mathbf{r}(t)$ in the next step, we may as well use the curvature formula $\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}$ [If we just needed to compute curvature, the formula involving the cross product of \mathbf{r}' and \mathbf{r}'' is more efficient].

$$\mathbf{r}'(t) = (-2\sin(t), 2\cos(t), 1)$$
 and so $|\mathbf{r}'(t)| = \sqrt{4\sin^2(t) + 4\cos^2(t) + 1} = \sqrt{5}$.

Thus
$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \left(-\frac{2}{\sqrt{5}}\sin(t), \frac{2}{\sqrt{5}}\cos(t), \frac{1}{\sqrt{5}}\right)$$

And so
$$\mathbf{T}'(t) = \left(-\frac{2}{\sqrt{5}}\cos(t), -\frac{2}{\sqrt{5}}\sin(t), 0\right)$$
 and thus $|\mathbf{T}'(t)| = \frac{2}{\sqrt{5}}$.

Answer: $\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{2/\sqrt{5}}{\sqrt{5}} = \frac{2}{5}$

(b) Find formulas for the unit tangent: $\mathbf{T}(t)$ and the unit normal: $\mathbf{N}(t)$ of $\mathbf{r}(t)$.

We already found $\mathbf{T}(t)$. So we just need to find $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} = \frac{1}{2/\sqrt{5}} \left(-\frac{2}{\sqrt{5}} \cos(t), -\frac{2}{\sqrt{5}} \sin(t), 0 \right)$ = $(-\cos(t), -\sin(t), 0)$

3. (10 points) Big and small.

(a) Let $f(x,y) = 4xy - x^4 - y^4$. Find and classify (i.e. identify as a relative min, relative max, or saddle point) the critical points of f.

 $f_x = 4y - 4x^3$ and $f_y = 4x - 4y^3$. Since these partials exist (and are continuous) everywhere, critical points can only occur at points where $f_x = f_y = 0$. Thus we have $4y = 4x^3$ and $4x = 4y^3$ and so $y = x^3$ and $x = y^3$. Thus $x = y^3 = (x^3)^3 = x^9$. This implies that $x(x^8 - 1) = 0$. Thus $x = 0, \pm 1$. But $y = x^3$ so if x = 0, then y = 0. If x = 1, then $y = 1^3 = 1$. If x = -1, then $y = (-1)^3 = -1$.

We have 3 critical points (as promised): (0,0), (1,1), and (-1,-1).

To classify these critical points we need to look at the Hessian. $f_{xx} = -12x^2$, $f_{xy} = f_{yx} = 4$, and $f_{yy} = -12y^2$. Thus $H = \begin{bmatrix} -12x^2 & 4 \\ 4 & -12y^2 \end{bmatrix}$.

- (x,y) = (0,0): $H(0,0) = \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}$ whose determinant is 0(0) 4(4) = -16 < 0. Thus (0,0) is a saddle point.
- (x,y) = (1,1): $H(1,1) = \begin{bmatrix} -12 & 4 \\ 4 & -12 \end{bmatrix}$ whose determinant is (-12)(-12) 4(4) = 144 16 > 0. Also, notice that $f_{xx}(1,1) = -12 < 0$. Thus (1,1) is a relative maximum.
- (x,y) = (-1,-1): $H(-1,-1) = \begin{bmatrix} -12 & 4 \\ 4 & -12 \end{bmatrix}$ whose determinant is (-12)(-12) 4(4) = 144 16 > 0. Also, notice that $f_{xx}(-1,-1) = -12 < 0$. Thus (-1,-1) is a relative maximum.
- (b) Set up (but do **not** solve) the equations coming from the Lagrange multipliers technique if we are trying to find the minimum and maximum value of f(x, y, z) = xyz subject to the constraint $x^2 + y^2 + z^2 = 1$.

Let $g(x, y, z) = x^2 + y^2 + z^2$ (the left hand side of the constraint equation). Then $\nabla f = (yz, xz, xy)$, $\nabla g = (2x, 2y, 2z)$ so that $\nabla f = (yz, xz, xy) = \lambda \nabla g = (2x\lambda, 2y\lambda, 2z\lambda)$

Answer: $yz = 2x\lambda$, $xz = 2y\lambda$, $xy = 2z\lambda$, and $x^2 + y^2 + z^2 = 1$.

Solving these equations isn't that difficult if we notice that they can be symmetrized. Multiplying the first by x, the second by y, and the third by z yields: $xyz=2x^2\lambda=2y^2\lambda=2z^2\lambda$. Thus $x^2=y^2=z^2$ so that $3x^2=x^2+x^2+x^2=1$. Therefore, x, y, and z can each take on either value $\pm 1/\sqrt{3}$ (so there are $2\times 2\times 2=8$ points of interest). 4 of these points yield f's maximum value (constrained to $x^2+y^2+z^2=1$) and the other 4 points give the minimum value of f. The max value is $(1/\sqrt{3})^3=\frac{1}{3\sqrt{3}}$ and the min value is $-(1/\sqrt{3})^3=-\frac{1}{3\sqrt{3}}$.

4. (8 points) For each of the following vector fields, decide if **F** is conservative. Also, if it is conservative, find a potential function for **F**.

2

(a) $\mathbf{F}(x, y, z) = \langle x^3 + z, 3x^2 + 2yz, y^2 + x \rangle$

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^3 + z & 3x^2 + 2yz & y^2 + x \end{vmatrix} = (2y - 2y, -(1-1), 6x - 0) = (0, 0, 6x) \neq (0, 0, 0).$$

Therefore, \mathbf{F} is not conservative.

(b) $\mathbf{F}(x, y, z) = \langle y, x + 2y - z \sin(y), \cos(y) \rangle$

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x + 2y - z\sin(y) & \cos(y) \end{vmatrix} = (-\sin(y) - (-\sin(y)), -(0-0), 1-1) = (0,0,0)$$

Therefore, **F** is conservative. Now we must find a potential function.

 $\int y \, dx = xy + C_1(y, z), \int x + 2y - z \sin(y) \, dy = xy + y^2 + z \cos(y) + C_2(x, z), \text{ and } \int \cos(y) \, dz = z \cos(y) + C_3(x, y).$ Thus $f(x, y, z) = xy + y^2 + z \cos(y) + C$ (C is any constant) is a potential function for \mathbf{F} (i.e. $\nabla f = \mathbf{F}$).

5. (10 points) Find the centroid for the curve C: $\mathbf{r}(t) = \langle 3\cos(t) + 3, 3\sin(t) \rangle, \boxed{0 \le t \le \pi}$

$$m = \int_C 1 \, ds$$
 $M_y = \int_C x \, ds$ $M_x = \int_C y \, ds$ $(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$

C is the upper-half of the circle of radius 3 centered at (3,0). Thus we immediately know (by symmetry) that $\bar{x}=3$. Next, $m={\rm Arc\ Length}=3\pi$ (half of the circumference of a circle of radius 3). Thus we have just one integral to compute: M_x .

$$\mathbf{r}'(t) = \langle -3\sin(t), 3\cos(t) \rangle$$
 and so $|\mathbf{r}'(t)| = \sqrt{9\sin^2(t) + 9\cos^2(t)} = \sqrt{9} = 3$. Thus $ds = |\mathbf{r}'(t)| dt = 3 dt$.

$$M_x = \int_C y \, ds = \int_0^{\pi} 3\sin(t) \cdot 3 \, dt = -9\cos(t) \Big|_0^{\pi} = -9\cos(\pi) - (-9\cos(0)) = 9 + 9 = 18.$$

Answer: $(\bar{x}, \bar{y}) = \left(3, \frac{18}{3\pi}\right) = \left(3, \frac{6}{\pi}\right)$

6. (8 points) $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ is a vector field whose component functions are continuous and have continuous partials (of all orders) everywhere except at the origin. In addition, $P_y = Q_x$ everywhere except at the origin. Suppose we know the following information: $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 5$ and $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 3$ where C_1 and C_2 are shown in the picture below and to the left:

Consider the curves C_3 and C_4 pictured above and to the right. Then fill in the blanks:

$$\int_{C_3} \mathbf{F} \bullet d\mathbf{r} = -3 \qquad \qquad \int_{C_4} \mathbf{F} \bullet d\mathbf{r} = 10$$

Notice that C_3 can be deformed (without running into the "bad spot") into C_2 (running backwards). Thus the integral along C_3 is the same as the integral along $-C_2$. This is -3. C_4 as going around (0,0) twice counter-clockwise. Thus the integral along C_4 is 5+5=10.

- 7. (10 points) Let S_1 be the part of the surface $z = 1 x^2 y^2$ which lies above the xy-plane (i.e. $z \ge 0$).
- (a) Parameterize S_1 (remember to give bounds for your parameters). Then find a formula for the orientation \mathbf{n} of S_1 if S_1 is oriented upward.

I will parametrize S_1 in two different ways. Once with rectangular coordinates and once with polar coordinates.

• Using rectangular coordinates, we have x = x, y = y, and $z = 1 - x^2 - y^2$. This paraboloid is to be cut-off where it intersects the xy-plane (i.e. z = 0). $0 = z = 1 - x^2 - y^2$ implies that $x^2 + y^2 = 1$. So the paraboloid intersected with the xy-plane is the unit circle.

$$\mathbf{r}(x,y) = \langle x, y, 1 - x^2 - y^2 \rangle$$
 where $x^2 + y^2 \le 1$

3

To compute the orientations of S_1 we need to take partials, compute a cross product and normalize. $\mathbf{r}_x = \langle 1, 0, -2x \rangle$ and $\mathbf{r}_y = \langle 0, 1, -2y \rangle$. $\mathbf{r}_x \times \mathbf{r}_y = \langle 2x, 2y, 1 \rangle$ so $|r_x \times r_y| = \sqrt{(2x)^2 + (2y)^2 + 1^2} = \sqrt{1 + 4x^2 + 4y^2}$.

$$\mathbf{n}(x,y) = \pm \frac{1}{\sqrt{1+4x^2+4y^2}} \langle 2x, 2y, 1 \rangle$$

The final component is positive if we choose the "+" sign. This is the upward orientation.

• Using polar coordinates, we have $x = r\cos(\theta)$, $y = r\sin(\theta)$, and $z = 1 - (x^2 + y^2) = 1 - r^2$. Again intersecting leaves us with $0 = 1 - x^2 - y^2$ so that $r^2 = x^2 + y^2 = 1$.

$$\mathbf{r}(r,\theta) = \langle r\cos(\theta), r\sin(\theta), 1-r^2 \rangle$$
 where $0 \le r \le 1$, $0 \le \theta \le 2\pi$

Again we compute the orientation. $\mathbf{r}_r = \langle \cos(\theta), \sin(\theta), -2r \rangle$ and $\mathbf{r}_\theta = \langle -r\sin(\theta), r\cos(\theta), 0 \rangle$. $\mathbf{r}_r \times \mathbf{r}_\theta = \langle 2r^2\cos(\theta), 2r^2\sin(\theta), r \rangle$ so $|\mathbf{r}_r \times \mathbf{r}_\theta| = \sqrt{4r^4\cos^2(\theta) + 4r^4\sin^2(\theta) + r^2} = \sqrt{4r^4 + r^2} = \sqrt{r^2(4r^2 + 1)} = r\sqrt{1 + 4r^2}$.

$$\mathbf{n}(r,\theta) = \pm \frac{1}{r\sqrt{1+4r^2}} \langle 2r^2 \cos(\theta), 2r^2 \sin(\theta), r \rangle = \pm \frac{1}{\sqrt{1+4r^2}} \langle 2r \cos(\theta), 2r \sin(\theta), 1 \rangle$$

Again, the final component is positive if we choose the "+" sign. This is the upward orientation.

(b) Set up, but do **not** attempt to evaluate, the surface integral $\iint_{S_1} xz \, dS$.

$$\iint_{S_1} xz \, dS = \iint_{x^2 + y^2 \le 1} x(1 - x^2 - y^2) |\mathbf{r}_x \times \mathbf{r}_y| \, dA = \int_{-1}^1 \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} x(1 - x^2 - y^2) \sqrt{1 + 4x^2 + 4y^2} \, dy \, dx$$

OR

$$\iint_{S_1} xz \, dS = \int_0^{2\pi} \int_0^1 r \cos(\theta) \cdot (1 - r^2) |\mathbf{r}_r \times \mathbf{r}_\theta| \, dr \, d\theta = \int_0^{2\pi} \int_0^1 r \cos(\theta) \cdot (1 - r^2) r \sqrt{1 + 4r^2} \, dr \, d\theta$$

8. (10 points) Let C be the edge of the rectangle with vertices at (0,0), (2,0), (2,1), and (0,1) oriented counter-clockwise. Evaluate $\int_C \left(\arctan(e^{-x^2}) + y^3\right) dx + \left(\sin(\ln(y^2 + 1)) + 3x\right) dy$ Hint: Think Green.

C is the boundary of the rectangle $R=[0,2]\times[0,1]$. It's oriented counter-clockwise (i.e. positively) so Green's theorem applies directly. $P(x,y)=(\arctan(e^{-x^2})+y^3 \text{ and so } \frac{\partial P}{\partial y}=P_y=3y^2$. $Q(x,y)=\sin(\ln(y^2+1))+3x$ and so $\frac{\partial Q}{\partial x}=Q_x=3$. Thus

$$\int_C \left(\arctan(e^{-x^2}) + y^3\right) dx + \left(\sin(\ln(y^2 + 1)) + 3x\right) dy = \iint_R Q_x - P_y dA = \int_0^2 \int_0^1 3 - 3y^2 dy dx$$
$$= \int_0^2 3y - y^3 \Big|_0^1 dx = \int_0^2 3 - 1 dx = \int_0^2 2 dx = 4$$

9. (10 points) Compute the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x, y, z) = xz^2\mathbf{i} + (x + z^5)\mathbf{j} + 6xy\mathbf{k}$ and S_1 is the sphere $x^2 + y^2 + z^2 = 9$ oriented outward. *Hint:* Think Divergence.

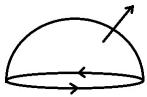
 S_1 is the boundary of the solid ball $x^2 + y^2 + z^2 \le 9$. Since S_1 is oriented outward, the divergence theorem applies (with no sign adjustment). $\operatorname{div}(\mathbf{F}) = \frac{\partial}{\partial x} \left[xz^2 \right] + \frac{\partial}{\partial x} \left[x+z^5 \right] + \frac{\partial}{\partial x} \left[6xy \right] = z^2 + 0 + 0 = z^2$. Given we are integrating over spherical things, we will switch to spherical coordinates. Applying the divergence theorem, we get

$$= \iiint\limits_{x^2+y^2+z^2\leq 9} z^2\,dV = \int_0^{2\pi} \int_0^\pi \int_0^3 \rho^2\cos^2(\phi)\rho^2\sin(\phi)\,d\rho\,d\phi\,d\theta = \int_0^{2\pi}\,d\theta \int_0^\pi \cos^2(\phi)\sin(\phi)\,d\phi \int_0^3 \rho^4\,d\rho$$

$$= 2\pi \left[-\frac{1}{3}\cos^3(\phi) \right]_0^\pi \left[\frac{\rho^5}{5} \right]_0^3 = -\frac{2\pi}{3} \cdot \left((-1) - (1) \right) \cdot \frac{3^5}{5} = \frac{4 \cdot 3^4\pi}{5} = \frac{324\pi}{5}$$

10. (13 points) Let S_1 be the upper-half of the unit sphere: $x^2 + y^2 + z^2 = 1$, $z \ge 0$. Orient S_1 upward, let C be the boundary of S_1 with the induced orientation, and let $\mathbf{F}(x,y,z) = \langle y,z,x \rangle$. Verify Stoke's Theorem by computing both sides of $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_{S_1} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$

First, note that $x^2 + y^2 + z^2 = 1$ intersected with z = 0 gives $x^2 + y^2 = 1$ (the unit circle in the xy-plane). This is the boundary of the upper-half of the unit sphere. The induced orientation on the boundary is the standard (counter-clockwise) orientation of the unit circle.



First, we'll compute the line integral side. C can be parametrized by $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ where $0 \le t \le 2\pi$. So $\mathbf{r}'(t) = \langle -\sin(t), \cos(t), 0 \rangle$.

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2\pi} \langle \sin(t), 0, \cos(t) \rangle \cdot \langle -\sin(t), \cos(t), 0 \rangle dt = \int_{0}^{2\pi} -\sin^{2}(t) dt = \int_{0}^{2\pi} -\frac{1}{2} (1 - \cos(2t)) dt$$
$$= -\frac{1}{2}t + \frac{1}{4}\sin(2t) \Big|_{0}^{2\pi} = -\frac{1}{2} \cdot 2\pi = -\pi$$

Now to compute the flux integral side. First, let's compute the curl of F.

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & z & x \end{vmatrix} = \langle -1, -1, -1 \rangle$$

Now let's parametrize the upper-half of the sphere. In spherical coordinates, the equation of the unit sphere is $\rho^2 = 1$. So we have $\mathbf{r}(\phi, \theta) = \langle \cos(\theta) \sin(\phi), \sin(\theta) \sin(\phi), \cos(\phi) \rangle$ where $0 \le \theta \le 2\pi$ and $0 \le \phi \le \pi/2$ (keep in mind $\phi \le \pi/2$ since we're only dealing with the upper-half of the sphere).

Next, we need to compute the cross product of the partials of our parametrization.

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos(\theta)\cos(\phi) & \sin(\theta)\cos(\phi) & -\sin(\phi) \\ -\sin(\theta)\sin(\phi) & \cos(\theta)\sin(\phi) & 0 \end{vmatrix} = \langle \cos(\theta)\sin^{2}(\phi), \sin(\theta)\sin^{2}(\phi), \sin(\phi)\cos(\phi) \rangle$$

When $0 \le \phi \le \pi/2$ both $\sin(\phi)$ and $\cos(\phi)$ are non-negative. So the final component of $\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}$ is non-negative. Thus this matches with the upward orientation.

$$\iint_{S_1} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = \int_0^{2\pi} \int_0^{\pi/2} \langle -1, -1, -1 \rangle \cdot \langle \cos(\theta) \sin^2(\phi), \sin(\theta) \sin^2(\phi), \sin(\phi) \cos(\phi) \rangle d\phi d\theta$$

$$= \int_0^{\pi/2} \int_0^{2\pi} -\cos(\theta) \sin^2(\phi) - \sin(\theta) \sin^2(\phi) - \sin(\phi) \cos(\phi) d\theta d\phi = \int_0^{\pi/2} -2\pi \sin(\phi) \cos(\phi) d\phi$$

$$= -2\pi \cdot \frac{1}{2} \sin^2(\phi) \Big|_0^{\pi/2} = -\pi$$

With much relief, we see that our answer matches that of our line integral: $-\pi = -\pi$ (Stokes' verified).