- 1. (____/11 points) Lines and Planes
- (a) Find an equation for the plane which contains the points: (1,2,3), (1,0,0), and (-1,2,1).

(b) Find parametric equations for the line which passes through the points: (4,1,6) and (1,-3,1).

(c) Consider the level surface $x^3 + xy + 2y^3 + yz + z^3 = 2$. Find an equation for the plane tangent to this surface at the point (1,0,1).

a /	/ - 0								
2. (/10 points)	Consider the vector	valued function:	$\mathbf{r}(t) = 0$	$\langle 2\cos(t).$	$2\sin(t), t$	where 0	1 < t < 1	2π

(a) Find a formula for the curvature (i.e. $\kappa(t)$) of $\mathbf{r}(t)$.

(b) Find formulas for the unit tangent: $\mathbf{T}(t)$ and the unit normal: $\mathbf{N}(t)$ of $\mathbf{r}(t)$.

- 3. (____/10 points) Big and small.
- (a) Let $f(x,y) = 4xy x^4 y^4$. Find and classify (i.e. identify as a relative min, relative max, or saddle point) the critical points of f.

 Hint: There are 3 critical points.

(b) Set up (but do **not** solve) the equations coming from the Lagrange multipliers technique if we are trying to find the minimum and maximum value of f(x, y, z) = xyz subject to the constraint $x^2 + y^2 + z^2 = 1$.

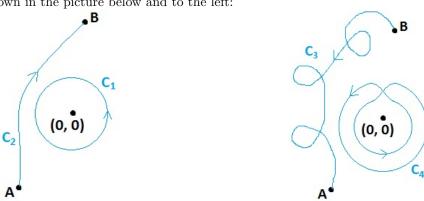
- 4. (____/8 points) For each of the following vector fields, decide if ${\bf F}$ is conservative. Also, if it is conservative, find a potential function for ${\bf F}$.
- (a) $\mathbf{F}(x,y,z) = \langle x^3+z, 3x^2+2yz, y^2+x \rangle$

(b) $\mathbf{F}(x, y, z) = \langle y, x + 2y - z\sin(y), \cos(y) \rangle$

5. (____/10 points) Find the centroid for the curve C: $\mathbf{r}(t) = \langle 3\cos(t) + 3, 3\sin(t) \rangle, \boxed{0 \le t \le \pi}$.

$$m = \int_C 1 \, ds$$
 $M_y = \int_C x \, ds$ $M_x = \int_C y \, ds$ $(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$

6. (_____/8 points) $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ is a vector field whose component functions are continuous and have continuous partials (of all orders) everywhere except at the origin. In addition, $P_y = Q_x$ everywhere except at the origin. Suppose we know the following information: $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 5$ and $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 3$ where C_1 and C_2 are shown in the picture below and to the left:



Consider the curves C_3 and C_4 pictured above and to the right. Then fill in the blanks:

$$\int_{C_3} \mathbf{F} \bullet d\mathbf{r} = \underline{\qquad \qquad \qquad } \int_{C_4} \mathbf{F} \bullet d\mathbf{r} = \underline{\qquad \qquad }$$

- 7. (____/10 points) Let S_1 be the part of the surface $z = 1 x^2 y^2$ which lies above the xy-plane (i.e. $z \ge 0$).
- (a) Parameterize S_1 (remember to give bounds for your parameters). Then find a formula for the orientation ${\bf n}$ of S_1 if S_1 is oriented upward.

(b) Set up, but do **not** attempt to evaluate, the surface integral $\iint_{S_1} xz \, dS$.

8. (____/10 points) Let C be the edge of the rectangle with vertices at (0,0), (2,0), (2,1), and (0,1) oriented counter-clockwise. Evaluate $\int_C \left(\arctan(e^{-x^2}) + y^3\right) dx + \left(\sin(\ln(y^2+1)) + 3x\right) dy$ Hint: Think Green.

9. (____/10 points) Compute the flux integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x,y,z) = xz^2\mathbf{i} + (x+z^5)\mathbf{j} + 6xy\mathbf{k}$ and S_1 is the sphere $x^2 + y^2 + z^2 = 9$ oriented outward. *Hint:* Think Divergence.

10. (____/13 points) Let S_1 be the upper-half of the unit sphere: $x^2 + y^2 + z^2 = 1$, $z \ge 0$. Orient S_1 upward, let C be the boundary of S_1 with the induced orientation, and let $\mathbf{F}(x,y,z) = \langle y,z,x \rangle$. Verify Stoke's Theorem by computing both sides of $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_{S_1} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$