Name: Answer Key

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v}$$
$$\mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t)$$

$$\kappa = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$
$$\kappa = \frac{|f''(x)|}{(1 + (f'(x))^2)^{\frac{3}{2}}}$$

1. (23 points) Let $\mathbf{u} = \langle -1, 2, 1 \rangle$, $\mathbf{v} = \langle 2, -1, 2 \rangle$, and $\mathbf{w} = \langle 0, 1, 2 \rangle$.

(a) Compute
$$\text{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} = \frac{(-1)(2) + 2(-1) + 1(2)}{4 + 1 + 4} \langle 2, -1, 2 \rangle = \frac{-2}{9} \langle 2, -1, 2 \rangle = \left\langle -\frac{4}{9}, \frac{2}{9}, -\frac{4}{9} \right\rangle$$

(b) Find the area of the parallelogram spanned by \mathbf{u} and \mathbf{v}

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 1 \\ 2 & -1 & 2 \end{vmatrix} = (2(2) - (-1)(1)) \mathbf{i} - ((-1)(2) - (2)(1)) \mathbf{j} + ((-1)(-1) - 2(2)) \mathbf{k} = \langle 5, 4, -3 \rangle$$

So the area of the parallelogram is $|\mathbf{u} \times \mathbf{v}| = |\langle 5, 4, -3 \rangle| = \sqrt{5^2 + 4^2 + (-3)^2} = \sqrt{50} = \boxed{5\sqrt{2}}$

(c) Find the angle between \mathbf{v} and \mathbf{w} (don't worry about evaluating inverse trigonometric functions).

We know that $\mathbf{v} \bullet \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos(\theta)$ where θ is the angle between \mathbf{v} and \mathbf{w} . Thus $\theta = \arccos\left(\frac{\mathbf{v} \bullet \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|}\right) = \arccos\left(\frac{(2)(0) + (-1)(1) + (2)(2)}{\sqrt{2^2 + (-1)^2 + 2^2} \cdot \sqrt{0^2 + 1^2 + 2^2}}\right) = \arccos\left(\frac{3}{\sqrt{9} \cdot \sqrt{5}}\right) = \arccos\left(\frac{1}{\sqrt{5}}\right)$ [which is approximately 63.435°]

Is this angle... right, acute, or obtuse? (Circle your answer.)

The angle is acute because $\mathbf{v} \cdot \mathbf{w} = 3 > 0$.

[A positive dot product means that $\cos(\theta) > 0$ and so $0 \le \theta < \pi/2$ – the angle is acute.]

(d) Find the volume of the parallelepiped spanned by \mathbf{u} , \mathbf{v} , and \mathbf{w} .

$$|\mathbf{u} \bullet (\mathbf{v} \times \mathbf{w})| = |(\mathbf{u} \times \mathbf{v}) \bullet \mathbf{w}| = |\langle 5, 4, -3 \rangle \bullet \langle 0, 1, 2 \rangle| = |0(5) + 4(1) + (-3)(2)| = 2$$

OR... This can be computed directly by taking the absolute value of the determinant of

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 \\ 2 & -1 & 2 \\ 0 & 1 & 2 \end{bmatrix} = (-1) \begin{bmatrix} -1 & 2 \\ 1 & 2 \end{bmatrix} - (2) \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} + (1) \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} = (-1)(-4) - (2)(4) + (1)(2) = -2 \xrightarrow{\text{Absolute Value}} 2$$

(e) **a** and **b** are vectors. Match the following:

 $\mathbf{a} \times \mathbf{b} = \mathbf{0}$

 \mathbf{a} and \mathbf{b} are orthogonal.

$$\mathbf{a} \cdot \mathbf{b} = 0$$

This is always true.

 $\mathbf{a} \bullet (\mathbf{b} \times \mathbf{b}) = 0$

a and **b** are parallel.

2. (14 points) Lines!

(a) Find parametric equations for the line through P = (1, 2, 3) and Q = (2, -1, 1).

We need a point (either will work) and a direction vector to find parametric equations for a line. We can find a direction vector by constructing a vector point from P to Q (or Q to P). $\vec{PQ} = Q - P = \langle 2-1, -1-2, 1-3 \rangle = \langle 1, -3, -2 \rangle$.

Answer:
$$\mathbf{r}(t) = \langle 1, 2, 3 \rangle + \langle 1, -3, -2 \rangle t$$
 or $\mathbf{r}(t) = \langle 1 + t, 2 - 3t, 3 - 2t \rangle$ or $x(t) = 1 + t, y(t) = 2 - 3t, \text{ and } z(t) = 3 - 2t$

Note: Since there are infinitely many ways to parametrize a curve, there are infinitely many (correct) solutions to this problem. For example: $\mathbf{r}(t) = \langle 2, -1, 1 \rangle + \langle -5, 15, 10 \rangle t$ is also a solution (used point Q and scaled the direction vector by -5).

(b) Let ℓ_1 be the line parametrized by $\mathbf{r}_1(t) = \langle t+1, 2t-1, -t+2 \rangle$ and ℓ_2 be the line parametrized by $\mathbf{r}_2(t) = \langle 2t+6, -t-1, -2t-3 \rangle$. Determine if ℓ_1 and ℓ_2 are the same, parallel, intersecting, or skew.

First, let's find a direction vector for each line. We could do this by "factoring" the parameterization into $\mathbf{r} = (\text{point}) + (\text{direction vector}) \cdot t$. Or we could plug in two values of t to get 2 points on the line and then take their difference. Finally, the easiest way is just to take the derivative (this gives a tangent vector which is parallel to the line — a direction vector).

 $\mathbf{r}_1'(t) = \langle 1, 2, -1 \rangle$ and $\mathbf{r}_2'(t) = \langle 2, -1, -2 \rangle$. Since these vectors are not scalar multiples of each other, they are not parallel. Thus ℓ_1 and ℓ_2 cannot be the same line or parallel lines.

So ℓ_1 and ℓ_2 are either intersecting or skew. We need to see if $r_1(s) = r_2(t)$ for some s and t (remember to use different parameters s and t since the lines could intersect at "different times"). This gives us the vector equation: $\langle s+1, 2s-1, -s+2 \rangle = \langle 2t+6, -t-1, -2t-3 \rangle$ and so s+1=2t+6, 2s-1=-t-1, and -s+2=-2t-3. Using the second equation, we see that 2s=-t and so t=-2s. Plugging this into the first equation gives us s+1=2(-2s)+6 and so 5s=5. Thus s=1 and so t=-2s=-2. Let's see if this actually gives us a solution: $r_1(1)=\langle 2,1,1 \rangle$ and $r_2(-2)=\langle 2,1,1 \rangle$ (they match so we have a solution).

Answer: ℓ_1 and ℓ_2 are intersecting lines. They intersect at the point (2,1,1).

3. (**14 points**) Planes!

(a) Find an equation for the plane which passes through the points (1,2,2), (3,4,5), and (1,-1,0).

We need a point (we have 3 to choose from) and a normal vector. A normal vector is orthogonal to the plane. We can construct such a vector by cross producting 2 vectors which are parallel to the plane. To this end we can find vectors parallel to the plane by taking differences of points lying in the plane. Therefore, (3-1,4-2,5-2) = (2,2,3) and (1-1,-1-2,0-2) = (0,-3,-2) are parallel to the plane.

$$\langle 2,3,3\rangle \times \langle 0,-3,-2\rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 3 \\ 0 & -3 & -2 \end{vmatrix} = (2(-2)-(-3)(3))\mathbf{i} - (2)(-2)-(0)(3))\mathbf{j} + (2(-3)-(0)2)\mathbf{k} = \langle 5,4,-6\rangle$$

The equation for a plane with normal vector $\langle a, b, c \rangle$ which passes through the point (x_0, y_0, z_0) is $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$.

Answer:
$$5(x-1) + 4(y-2) - 6(z-2) = 0$$
 or $5x + 4y - 6z = 1$

- (b) Find an equation for the plane which
 - is parallel to the line parametrized by $\mathbf{r}(t) = \langle 2t+1, -2t-2, t+3 \rangle$ and
 - contains the line $\mathbf{r}(t) = \langle t+1, t+2, 2t-2 \rangle$.

Again we need a point and a normal vector. Since $\mathbf{r}(t) = \langle 2t+1, -2t-2, t+3 \rangle$ is parallel to the plane, we must have that $\mathbf{r}'(t) = \langle 2, -2, 1 \rangle$ is parallel to the plane. Likewise, since $\mathbf{r}(t) = \langle t+1, t+2, 2t-2 \rangle$ lies in the plane (and thus is parallel to the plane), we must have that $\mathbf{r}'(t) = \langle 1, 1, 2 \rangle$ is parallel to the plane.

$$\langle 2, -2, 1 \rangle \times \langle 1, 1, 2 \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = ((-2)(2) - (1)(1))\mathbf{i} - ((2)(2) - (1)(1))\mathbf{j} + ((2)(1) - (1)(-2))\mathbf{k} = \langle -5, -3, 4 \rangle$$

Now that we have a normal vector we just need a point in the plane. But the whole line $\mathbf{r}(t) = \langle t+1, t+2, 2t-2 \rangle$ lies in the plane, so $\mathbf{r}(0) = \langle 1, 2, -2 \rangle$ is a point on the plane.

Answer:
$$-5(x-1) - 3(y-2) + 4(z+2) = 0$$
 or $-5x - 3y + 4z = -19$

- **4.** (10 points) Consider the curve $\mathbf{r}(t) = \langle 5\sin(t), 4\cos(t), 3\cos(t) \rangle$ where $0 \le t \le 2\pi$. *Note:* The original problem had ..., $2\cos(t)$, ... instead of ..., $4\cos(t)$, ... which leads to an integral which can't be done by hand.
- (a) Find a formula for this curve's arc length function: s(t). Also, compute the total arc length.

$$\mathbf{r}'(t) = \langle 5\cos(t), -4\sin(t), -3\sin(t) \rangle \text{ so } |\mathbf{r}'(t)| = \sqrt{(5\cos(t))^2 + (-4\sin(t))^2 + (-3\sin(t))^2} = \sqrt{25\cos^2(t) + 16\sin^2(t) + 9\sin^2(t)} = \sqrt{25\cos^2(t) + 25\sin^2(t)} = \sqrt{25} = 5 \text{ Since our parameterization starts at } a = 0, \text{ we have:}$$

$$s(t) = \int_a^t |\mathbf{r}'(u)| du = \int_0^t 5 du = 5t$$
 \Longrightarrow Arc Length $= s(2\pi) = 5(2\pi) = 10\pi$

Note: Originally this problem led us to $|\mathbf{r}'(t)| = \sqrt{(5\cos(t))^2 + (-2\sin(t))^2 + (-3\sin(t))^2} = \sqrt{25\cos^2(t) + 13\sin^2(t)}$. The integral of $\sqrt{25\cos^2(t) + 13\sin^2(t)} = \sqrt{13 + 12\cos^2(t)}$ (using $\sin^2(t) = 1 - \cos^2(t)$) is impossible to do "by hand". In fact, it involves "elliptic functions" (related to finding the arc length of an ellipse). SORRY!!! Bad typo \odot

(b) Reparametrize this curve with respect to arc length (find " $\mathbf{r}(s)$ "). Don't forget to specify the range for the arc length parameter: $?a? \le s \le ?b?$.

We just found that s = 5t and so t = s/5.

Answer:
$$\mathbf{r}(s) = \langle 5\sin(s/5), 4\cos(s/5), 3\cos(s/5) \rangle$$
 where $0 \le s \le 10\pi$.

5. (15 points) Find the TNB-frame for the helix $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$.

$$\begin{split} \mathbf{r}'(t) &= \langle -4\sin(t), 4\cos(t), 3 \rangle \\ |\mathbf{r}'(t)| &= \sqrt{(-4\sin(t))^2 + (4\cos(t))^2 + 3^2} = \sqrt{16\sin^2(t) + 16\cos^2(t) + 9} = \sqrt{25} = 5 \\ \mathbf{T}(t) &= \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{1}{5} \langle -4\sin(t), 4\cos(t), 3 \rangle \\ \mathbf{T}'(t) &= \frac{1}{5} \langle -4\cos(t), -4\sin(t), 0 \rangle \\ |\mathbf{T}'(t)| &= \frac{1}{5} \sqrt{(-4\cos(t))^2 + (-4\sin(t))^2 + 0^2} = \frac{1}{5} \sqrt{16\cos^2(t) + 16\sin^2 t} = \frac{1}{5} \sqrt{16} = \frac{4}{5} \\ \mathbf{N}(t) &= \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} = \frac{\frac{1}{5} \langle -4\cos(t), -4\sin(t), 0 \rangle}{\frac{4}{5}} = \langle -\cos(t), -\sin(t), 0 \rangle \end{split}$$

$$\begin{aligned} \mathbf{B}(t) &= \mathbf{T}(t) \times \mathbf{N}(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\frac{4}{5}\sin(t) & \frac{4}{5}\cos(t) & \frac{3}{5} \\ -\cos(t) & -\sin(t) & 0 \end{vmatrix} \\ &= \left(\frac{4}{5}\cos(t)(0) - (-\sin(t))\frac{3}{5} \right) \mathbf{i} - \left(-\frac{4}{5}\sin(t)(0) - (-\cos(t))\frac{3}{5} \right) \mathbf{j} + \left(-\frac{4}{5}\sin(t)(-\sin(t)) - (-\cos(t))\frac{4}{5}\cos(t) \right) \mathbf{k} \\ &= \left\langle \frac{3}{5}\sin(t), -\frac{3}{5}\cos(t), \frac{4}{5} \right\rangle \end{aligned}$$

 $\textbf{Answer:} \quad \mathbf{T}(t) = \frac{1}{5} \langle -4\sin(t), 4\cos(t), 3 \rangle, \qquad \mathbf{N}(t) = \langle -\cos(t), -\sin(t), 0 \rangle, \qquad \mathbf{B}(t) = \frac{1}{5} \langle 3\sin(t), -3\cos(t), 4 \rangle$

6. (12 points) Curvature.

(a) Find a formula for the curvature of $\mathbf{r}(t) = \langle t^2, t, \sin(t) \rangle$.

$$\begin{array}{rcl} \mathbf{r}'(t) & = & \langle 2t, 1, \cos(t) \rangle \\ |\mathbf{r}'(t)| & = & \sqrt{4t^2 + 1 + \cos^2(t)} \\ \mathbf{r}''(t) & = & \langle 2, 0, -\sin(t) \rangle \\ |\mathbf{r}'(t) \times \mathbf{r}''(t)| & = & \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2t & 1 & \cos(t) \\ 2 & 0 & -\sin(t) \end{vmatrix} = (1(-\sin(t)) - (0)\cos(t))\,\mathbf{i} - (2t(-\sin(t)) - 2\cos(t))\,\mathbf{j} + (2t(0) - 2(1))\,\mathbf{k} \\ |\mathbf{r}'(t) \times \mathbf{r}''(t)| & = & \langle -\sin(t), 2t\sin(t) + 2\cos(t), -2 \rangle \\ |\mathbf{r}'(t) \times \mathbf{r}''(t)| & = & \sqrt{(-\sin(t))^2 + (2t\sin(t) + 2\cos(t))^2 + (-2)^2} = \sqrt{\sin^2(t) + (2t\sin(t) + 2\cos(t))^2 + 4} \end{array}$$

Answer:
$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} = \frac{\sqrt{\sin^2(t) + (2t\sin(t) + 2\cos(t))^2 + 4}}{(4t^2 + 1 + \cos^2(t))^{3/2}}$$
 [I didn't promise it would be pretty.]

Alternatively, we could (try to) compute $|\mathbf{T}'(t)|$ and use the other formula which says that $\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}$. However,

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{\langle 2t, 1, \cos(t) \rangle}{\sqrt{4t^2 + 1 + \cos^2(t)}} = \left\langle \frac{2t}{\sqrt{4t^2 + 1 + \cos^2(t)}}, \frac{1}{\sqrt{4t^2 + 1 + \cos^2(t)}}, \frac{\cos(t)}{\sqrt{4t^2 + 1 + \cos^2(t)}} \right\rangle$$

Good luck differentiating this and *then* finding the length of the derivative [it's a huge mess]. That's why the formula involving the cross product is so useful.

(b) Suppose that $\kappa(x) = 0$ for some curve y = f(x). What can you conclude about f(x)? What kind of curve is y = f(x)? Why?

Briefly, no curvature = straight line. [I want more explanation that just this.]

Since we have a curve of the form y = f(x) in \mathbb{R}^2 (the xy-plane) our special curvature formula applies: $\kappa = \frac{|f''(x)|}{(1 + (f'(x))^2)^{\frac{3}{2}}}.$ Thus if $\kappa = 0$, we must have that |f''(x)| = 0. Let's start with f''(x) = 0 and

integrate twice to see what f(x) might be. $f'(x) = \int 0 dx = m$ (m is some constant) and $f(x) = \int m dx = mx + b$ (b is some constant). Thus f(x) is a linear function. [Conversely, if f(x) = mx + b, we have that f''(x) = 0 so $\kappa = 0$.]

Answer: For curves of the form y = f(x), $\kappa(x) = 0$ if and only if y = f(x) is a line.

7. (12 points) No numbers here.

(a) Choose one of the following:

I. Let $\mathbf{r}(t)$ be a vector valued function (mapping into \mathbb{R}^3) whose first 3 derivative exist. Compute $\frac{d}{dt}[\mathbf{r} \cdot (\mathbf{r}' \times \mathbf{r}'')]$ and simplify (get rid of any zero terms).

II. Let ${\bf a}$ and ${\bf b}$ be vectors. Show that ${\bf c}={\bf b}-\operatorname{proj}_{\bf a}({\bf b})$ and ${\bf a}$ are orthogonal.

I. To compute the derivative we just use the product rule for the dot product and the product rule for the cross product.

$$\frac{d}{dt}\left[\mathbf{r}\bullet(\mathbf{r}'\times\mathbf{r}'')\right] = \mathbf{r}'\bullet(\mathbf{r}'\times\mathbf{r}'') + \mathbf{r}\bullet\left(\frac{d}{dt}\left[\mathbf{r}'\times\mathbf{r}''\right]\right) = \mathbf{r}'\bullet(\mathbf{r}'\times\mathbf{r}'') + \mathbf{r}\bullet\left(\mathbf{r}''\times\mathbf{r}''+\mathbf{r}'\times\mathbf{r}'''\right)$$

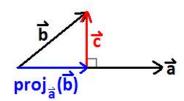
Now notice that $\mathbf{r}' \cdot (\mathbf{r}' \times \mathbf{r}'') = (\mathbf{r}' \times \mathbf{r}') \cdot \mathbf{r}'' = 0 \cdot \mathbf{r}'' = 0$ (Alternatively this is zero since the triple scalar product is related to volume of a parallelepiped and a parallelepiped spanned by 3 vectors 2 of which are the same has volume 0).

Also, $\mathbf{r}'' \times \mathbf{r}'' = \mathbf{0}$.

$$\mathbf{Answer:}\ \frac{d}{dt}\left[\mathbf{r}\bullet(\mathbf{r}'\times\mathbf{r}'')\right] = \mathbf{r}\cdot(\mathbf{r}'\times\mathbf{r}''')$$

II. To verify that \mathbf{c} and \mathbf{a} are orthogonal we can simply check that $\mathbf{a} \cdot \mathbf{c} = 0$.

$$\mathbf{a} \bullet \mathbf{c} = \mathbf{a} \bullet (\mathbf{b} - \operatorname{proj}_{\mathbf{a}}(\mathbf{b})) = \mathbf{a} \bullet \left(\mathbf{b} - \frac{\mathbf{a} \bullet \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}\right) = \mathbf{a} \bullet \mathbf{b} - \frac{\mathbf{a} \bullet \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a} \bullet \mathbf{a} = \mathbf{a} \bullet \mathbf{b} - \frac{\mathbf{a} \bullet \mathbf{b}}{|\mathbf{a}|^2} |\mathbf{a}|^2 = \mathbf{a} \bullet \mathbf{b} - \mathbf{a} \bullet \mathbf{b} = 0$$



(b) **a** and **b** are pictured below. Sketch $\mathbf{a} + \mathbf{b}$, $-0.5\mathbf{b}$, and $-2\mathbf{a} + \mathbf{b}$.

