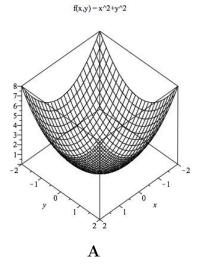
Name:

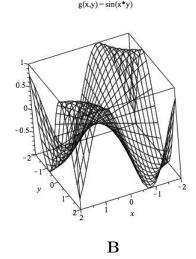
Be sure to show your work!

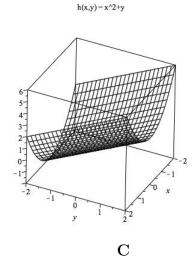
If
$$F(x,y) = C$$
, then $\frac{dy}{dx} = -\frac{F_x}{F_y}$

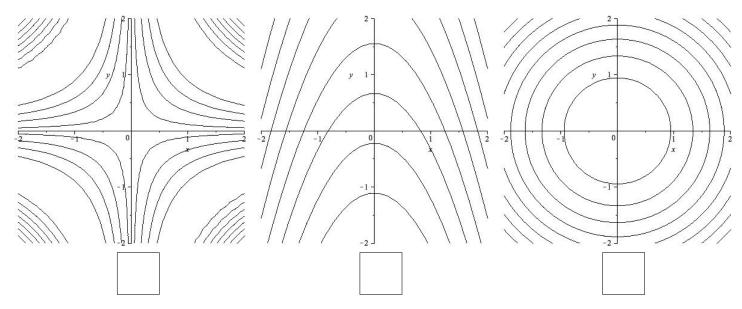
If
$$F(x, y, z) = C$$
, then $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$ and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

- 1. (____/12 points) Level curves and surfaces.
- (a) Match the graph of the surface with its contour map.









(b) State the equation for the level surfaces of $F(x, y, z) = (x - 1)^2 + (y - 2)^2 + (z - 3)^2$. What are these surfaces?

$$\lim_{(x,y)\to(0,0)}\frac{2x^3-y^3}{x^3+y^3}\qquad \text{does not exist.}$$

3. (
$$_$$
_/12 points) Partials

(a) Compute
$$\frac{\partial^2 w}{\partial x \partial z}$$
 where $w = x^2 e^{yz}$

(b) Suppose that $x-z=\cos(yz)$. Compute the implicit derivative $\frac{\partial z}{\partial x}$ [*Hint*: Move everything to one side of the equation then use the given formula.]

- 4. (_____/12 points) Let $f(x,y) = xy^3 + 3x^2 + 1$
- (a) Find the linearization of f(x,y) at (x,y) = (0,1).

(b) Find the quadratic approximation of f(x,y) at (x,y)=(0,1).

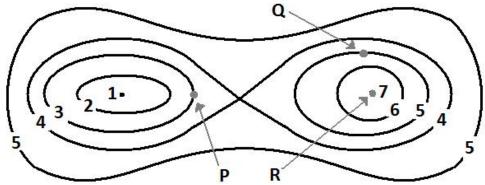
5. (_____/8 points) Let $w=f(x,y,z),\,x=g(t),\,y=h(t),\,z=\ell(t).$ State the chain rule for $\frac{dw}{dt}$.

6. (____/8 points) Find the equation of the plane tangent to $x^2z+z^2y+y^3=-5$ at the point (x,y,z)=(0,-1,2).

- 7. (____/16 points) Directional Derivative.
- (a) Compute $D_{\mathbf{u}}f(1,2)$ where $f(x,y)=2x^2+y^3$ and \mathbf{u} points in the same direction as the vector $\mathbf{v}=\langle 1,-1\rangle$.

(b) I was working on a problem involving a very complicated function g(x,y). In the course of computing my answer I found that $D_{\bf u}g(5,-2)=-12$. I also found that $\nabla g(5,-2)=\langle 3,4\rangle$. I know I've made a mistake. Why?

(c) Given the following contour plot. Sketch the gradient vectors at the given points or mark the point with an "X" if the gradient should be the zero vector.



8.	($/14_{-1}$	noints)	Consider	the fur	ection	f(x, y)	$-1 \pm r^{3}$	_ 21 ³ _	- 3m
0.	\	/ T.T.		Consider	one rui	icoron ,	J(x,y)	-4+x	1 9	ouy.

(a) Find the critical points of f(x,y). [Hint: There are only 2 critical points.]

(b) Use the "2nd derivative test" to classify these points (Relative min? Relative max? Saddle point?)

9. (_____/10 points) Set up equations (coming from the Lagrange multiplier method) which allow you to find the maximum and minimum value of $f(x,y) = 4x^3 + y^2$ subject to the constraint $2x^2 + y^2 = 1$. **Do not solve the equations.**