Name: _____

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v}$$

$$\mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \bullet \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t)$$

$$\kappa = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$
$$\kappa = \frac{|f''(x)|}{(1 + (f'(x))^2)^{\frac{3}{2}}}$$

- 1. (____/15 points) Let $\mathbf{v} = \langle 2, -1, 1 \rangle$, and $\mathbf{w} = \langle -3, 1, 2 \rangle$.
 - (a) Compute the projection of \mathbf{v} along \mathbf{w} : $\operatorname{proj}_{\mathbf{w}}(\mathbf{v})$.

(b) Find the angle between \mathbf{v} and \mathbf{w} (don't worry about evaluating inverse trigonometric functions).

Is this angle... right, acute, or obtuse? (Circle your answer.)

(c) Find the area of the triangle $\triangle PQR$ whose vertices are the points $P=(1,0,1),\ Q=(2,1,2),$ and R=(1,2,3).

2. (____/14 points) Line & Plane

(a) Let ℓ_1 be the line parametrized by $\mathbf{r}_1(t) = \langle -1+t, -t, -1-2t \rangle$ and ℓ_2 be the line parametrized by $\mathbf{r}_2(t) = \langle 3+t, 2+2t, 1+3t \rangle$. Determine if ℓ_1 and ℓ_2 are the same, parallel, intersecting, or skew.

(b) Find an equation for the plane which is passes through the points: $P=(1,2,0),\ Q=(2,1,1),$ and R=(-1,3,2).

3.	$(_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	points)	Parametrizations	and	such.
-----------	--	---------	------------------	-----	-------

(a) Consider the curve parametrized by $\mathbf{r}(t) = \langle 4\cos(t) - 3, 2\sin(t) \rangle$. Find a parametrization $\ell(t)$ for the line tangent to this curve at $t = \pi/3$. [Note: $\cos(\pi/3) = 1/2$ and $\sin(\pi/3) = \sqrt{3}/2$.]

What is kind of curve is this? (Be specific)

(b) Find a parametrization $\mathbf{r}(t)$ for the line segment from P = (-1, 1, 2) to Q = (1, 2, 1). Don't forget to specify bounds for the parameter t: ???? $\leq t \leq$???.

4.	$(_{}/15$	points)	Consider the curve	$\mathbf{r}(t) = \langle 3$	$3\sin(t), 3\cos(t), 4$	$ t\rangle$ where $0 \le t \le 4\pi$.
----	-----------	---------	--------------------	-----------------------------	-------------------------	--

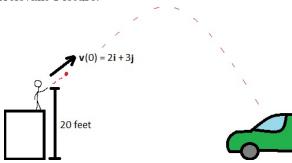
(a) Find the arc length of this curve. [Hint: The integral you end up with should be easy to evaluate.]

(b) Find the **TNB**-frame.

5. (____/14 points) Consider the twisted cubic: $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$.

(a) Find the curvature of $\mathbf{r}(t)$.

(b) Find the tangential and normal components of acceleration.


 $a_T = \underline{\hspace{1cm}}$

 $a_N = \underline{\hspace{1cm}}$

6. ((/14 points) Bob threw a ball off the top of a 20 foot tall building (so $\mathbf{r}(0)$ = initial velocity vector was $\mathbf{v}(0) = 2\mathbf{i} + 3\mathbf{j}$. Recall that the acceleration due to gravit (ft/s ²).	-,
	What was the ball's initial speed?	feet per second.

Find the formula for $\mathbf{r}(t)$.

Irrelevant Picture:

Irrelevant picture criticism: The velocity vector is not accurately rendered. Also, what does that car have to do with the problem? Hey! The car almost 20 feet tall!?! and Bob is a giant! That must be his car. Wait, why is he trying to break his own windshield? Must be insurance fraud. Conclusion: Physics is bad.

- 7. (____/14 points) No numbers here.
 - (a) Choose **ONE** of the following:
 - I. Suppose ${\bf v}$ and ${\bf w}$ have the same length. Show ${\bf v}+{\bf w}$ and ${\bf v}-{\bf w}$ are perpendicular.
 - II. Suppose that y = f(x) has zero curvature. Show that y = f(x) is a line.

(b) \mathbf{a} and \mathbf{b} are pictured below. Sketch $-2\mathbf{a}$ and $\mathbf{a} - \mathbf{b}$.